Fabrication of Al-Based Metal Printed Circuit Board Having Excellent Heat Dissipation Characteristics Using Polyimide/AlN Powder and Evaluation of Thermal Resistance of Light-Emitting Diode Module

2016 ◽  
Vol 16 (10) ◽  
pp. 10602-10606
Author(s):  
Jung-Kab Park ◽  
Seung-Bin Baek ◽  
Jong-Hwan Park ◽  
Su-Jeong Suh
Author(s):  
Jun-Xian Fu ◽  
Shukri Souri ◽  
James S. Harris

Abstract Temperature and humidity dependent reliability analysis was performed based on a case study involving an indicator printed-circuit board with surface-mounted multiple-die red, green and blue light-emitting diode chips. Reported intermittent failures were investigated and the root cause was attributed to a non-optimized reflow process that resulted in micro-cracks and delaminations within the molding resin of the chips.


2013 ◽  
Vol 3 (2) ◽  
pp. 41
Author(s):  
Andrea Marisi ◽  
Revantino Revantino

Perkembangan teknologi di bidang Solid State Lighting selama dekade terakhir membuat diversifikasi penggunaan Light Emitting Diode untuk pelayanan pencahayaan umum. Balai Besar Bahan dan Barang Teknik sejak tahun 2011 telah melakukan penelitian dan pengembangan lampu LED berbasis Surface Mounting Device (SMD) 5050. Pada perancangan Printed Circuit Board (PCB) untuk memasangkan LED-smd tersebut, dilakukan analisis dimensi geometrik yang optimal sehingga dapat memancarkan cahaya ke segala arah dan memberikan persepsi kecerahan yang lebih baik. Untuk perancangan PCB tersebut, dipilih 2 (dua) model berbentuk silinder dengan memperhatikan rasio antara tinggi dan diameter alas. Dari pendekatan sumber titik dan perhitungan eksitansi luminus, diperoleh bahwa model dengan rasio ≈ 1 menghasilkan persepsi lebih cerah terhadap visual manusia.Kata kunci : dimensi geometrik, pendekatan sumber titik, eksitansi luminus, persepsi kecerahan


2006 ◽  
Vol 3 (2) ◽  
pp. 67-72
Author(s):  
Kyuho Shin ◽  
Suho Shin ◽  
Soon Cheol Kweon ◽  
Kihwan Kwon ◽  
Seogmoon Choi ◽  
...  

A new light-emitting diode (LED) package module based on anodized circuit board (ACB) is developed in this study. ACB represents the selectively anodized aluminum board, in which the aluminum oxide layer, formed by anodizing process, serves as a dielectric layer and the electric signal lines are formed on it. LED chips can be directly attached to the metal pads on the aluminum core of ACB, which acts as p-electrode and at the same time easily spreads out the heat generated from the chips. The use of ACB in LED packaging has the benefit that ACB provides an excellent heat dissipation path from junction to board. This characteristic cannot be obtained from metal-core printed circuit board (MC-PCB), because it inevitably has a dielectric layer for electrical insulation of signal lines from metal base, which acts as a blocking layer in the heat path. By using the thermal transient method, the thermal resistance of the LED package (from junction to board) is measured to be about 4 °C/W. Also, we have performed the simulation of heat conduction, of which the results agree well with the experimental results. This chip-on-ACB LED package module has a potential application as a back light unit for display panel.


2018 ◽  
Vol 51 (7-8) ◽  
pp. 293-303 ◽  
Author(s):  
Chao-Ching Ho ◽  
You-Min Chen ◽  
Po-Chieh Li

Background: In this study, a machine vision–based method was developed for automated in-process light-emitting diode chip mounting lines with position uncertainty. In order to place the tiny light-emitting diode chips on the pattern of a printed circuit board, a highly accurate mounting process is achieved with online feedback of the visual assistance. Methods: The system consists of a charge-coupled device camera, a six-axis robot arm, and a delta robot. The lighting system is a critical point for the in-process machine vision problem. Hence, designing the optimal lighting solution is one of the most difficult parts of a machine vision system, and several lighting techniques and experiments are examined in this study. In order to commence the mounting process, the light-emitting diode chip targets inside the camera field were identified and used to guide the delta robot to the grabbing zone based on the calibrated homography transformation. Efforts have been focused on the field of machine vision–based feature extraction of the chip pins and the holes on the printed circuit board. The correspondence of each other is determined by the position of the chip pins and the printed circuit board circuit pattern. The image acquisition is achieved directly online in real time. The image analysis algorithm must be sufficiently fast to follow the production rate. In order to compensate for the uncertainty of the light-emitting diode chip mounting process, a visual feedback strategy in conjunction with an uncertainty compensation strategy is employed. Results: Finally, the light-emitting diode chip was automatically grabbed and accurately placed at the desired positions. Conclusion: On-line and off-line experiments were conducted to investigate the performance of the vision system with respect to detecting and mounting light-emitting diode chips.


2019 ◽  
Vol 97 (2) ◽  
pp. 490-496
Author(s):  
Scott L. Wallen ◽  
Jaspreet Dhau ◽  
Robert Green ◽  
Laura B. Wemple ◽  
Troy Kelly ◽  
...  

2010 ◽  
Vol 654-656 ◽  
pp. 2811-2814
Author(s):  
Hyo Soo Lee ◽  
Hyeong Won Shin ◽  
Seung Boo Jung

Light emitting diode (LED) has been largely used in industry of consumer electronics such as cell-phones, PDAs, and computers. Since all light sources convert electric power into radiant energy and heat, LED also does the same with an increase of its power. Generally, it only converts 15~25% of electric power into visible light; the rest of the power, 75~85%, is converted into heat. This excess heat should be conducted away from the LED die to circuit boards or heat sinks since heat affects directly performance of the LED. The piled heat in LED products brings color shift and reduces light output very rapidly. Furthermore, the lifecycle of LED products shorten if the heat problem continues. In order to prevent LED products from these negative effects, effective thermal resistance paths need to be achieved so that LED products let the heat conduct from the LED to the outside such as printed circuit board. In this research, optimization studies on thermal-via is to be performed. The 1W and 3W LED assembled printed circuit board with 16 different via designs is set up to measure its temperature for 4 hours in a real time. It was obtained by this work that the optimized thermal via was very effective to dissipate the heat from the LED.


Circuit World ◽  
2016 ◽  
Vol 42 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Michal Baszynski ◽  
Edward Ramotowski ◽  
Dariusz Ostaszewski ◽  
Tomasz Klej ◽  
Mariusz Wojcik ◽  
...  

Purpose – The purpose of this paper is to evaluate thermal properties of printed circuit board (PCB) made with use of new materials and technologies. Design/methodology/approach – Four PCBs with the same layout but made with use of different materials and technologies have been investigated using thermal camera to compare their thermal properties. Findings – The results show how important the thermal properties of PCBs are for providing effective heat dissipation, and how a simple alteration to the design can help to improve the thermal performance of electronic device. Proper layout, new materials and technologies of PCB manufacturing can significantly reduce the temperature of electronic components resulting in higher reliability of electronic and power electronic devices. Originality/value – This paper shows the advantages of new technologies and materials in PCB thermal management.


2021 ◽  
Vol 26 (5) ◽  
pp. 426-431
Author(s):  
V.A. Sergeev ◽  
◽  
A.M. Khodakov ◽  
M.Yu. Salnikov ◽  
◽  
...  

Thermal methods of quality control of the plated-through hole (PTH) of printed circuit board (PCB) are based on thermal models. However, known thermal models of PTH take no account of heat transfer to PCB material thus not allowing for PTH heat characteristic tying up with adhesion quality. In this work, an axisymmetric thermal model of a single-layer PCB PTH under one-sided heating conditions is considered. It was shown that the ratio of the temperature increments of the upper (heated) and lower end of the PTH in the considered range of heating power does not depend on the power level. A linear thermal equivalent scheme of the PTH has been proposed, which includes the longitudinal thermal resistance of the PTH metallization, de-termined by the parameters and quality of the metallization layer, the thermal resistance, which determines the convection heat exchange between the ends of the PTH with the adjacent PCB surface and the environment, and the thermal resistance of the area of the PCB material adjacent to the PTH, depending on the quality of the metallization adhesion and the PCB dielectric. Thermal equivalent circuit parameters determined by the ratio of the temperature increment of the upper and lower ends of the PTH and their difference can serve as the basis for the development of a nondestructive inspection procedure for PTH quality control by way of its unilateral heating, for example, by a laser beam.


2015 ◽  
Vol 15 (10) ◽  
pp. 7578-7581
Author(s):  
Jung-Kab Park ◽  
Jin-Ha Shin ◽  
Mun-Gi Jung ◽  
Tomabechi Shigehisa ◽  
Hwa-Sun Park ◽  
...  

Unlike other light sources such as fluorescent lamps and incandescent bulbs, light-emitting diodes (LED) convert 70∼80% of energy into heat. If the heat produced an LED chip is not effectively released, its luminous efficiency and lifespan are reduced. Therefore, as a method effectively release heat, an LED PKG substrate containing a heat-releasing material with excellent thermal conductance was fabricated, and its thermal resistance and luminous efficiency were analyzed. In this experiment, a thin polyimide film with excellent ductility was used to fabricate the LED PKG substrate. A 35-μm-thick Cu foil with excellent thermal conductance was subjected to high temperature and pressure and attached to both sides of the polyimide film. By electroplating Ag or Au, which has excellent thermal conductance, for us as the electrode and heat-releasing material, LED PKG substrate was fabricated with a thickness of approximately 170 μm. (−40 °C → RT → 120 °C). The results revealed that the LED PKG substrate having a Ag electrode with excellent thermal conductance had an excellent thermal resistance of approximately 4.2 °C/W (Au electrode: 5.6 °C/W). The luminous flux after 100 cycles in the thermal shock test was reduced by approximately 0.09% (Au electrode: 2.77%), indicating that the LED PKG substrate had excellent thermal resistance without any mechanical and material defects in a rapid-temperature-changing environment. The advantages and excellent thermal resistance can be exploited in cellular phones and LCD panels, and heat-releasing problems in thin panels be solved.


2018 ◽  
Vol 193 (3-4) ◽  
pp. 578-584 ◽  
Author(s):  
Xavier de la Broïse ◽  
Alain Le Coguie ◽  
Jean-Luc Sauvageot ◽  
Claude Pigot ◽  
Xavier Coppolani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document