scholarly journals Preparation of High-Performance Metal-Free UV/Near Infrared-Shielding Films for Human Skin Protection

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1954
Author(s):  
Chih-Hao Liang ◽  
Ying-Jung Chen

A series of metal-free UV/near infrared (NIR)-shielding coatings are successfully fabricated by shielded cathodic arc plasma evaporation (CAPE) and substrate-biased RF magnetron sputtering processes. The UV/NIR-shielding coatings comprising quarter-wave stacks of TiO2/SiO2 multilayers and high-conductivity sputter-deposited ITO films with a thickness in the range of 200–600 nm could block IRA and IRB radiations, respectively. The total thicknesses of UV/near infrared-shielding films are in the range from 375 nm to 1513.8 nm. The anatase-phase TiO2 films with absorption edge located at ∼375 nm were deposited by shielded CAPE at ∼100 °C. Further, the well-crystallized ITO films were found to have high free-electron concentrations (1.12 × 1021 cm−3), resulting in strong absorption of IRB due to the plasmon resonance absorption. The optimal optical design and ITO film thickness were investigated, and the TiO2(SiO2/TiO2)3 multilayer combined with an ITO film thickness of 400 nm was found to provide a high NIR-shielding rate of 94.8%, UVB to UVA-shielding rate of 92.7%, and average visible light transmittance of 68.1%. Further, human skin cells protected by a UV/NIR-shielding coating showed significantly decreased reactive oxygen species generation and inflammatory cytokine expression as compared to those of unprotected cells. The results demonstrate that the development of multifunction coatings have potential for transparent heat insulation windows and human skin protection against UV/IR radiations.

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Xiaoyan Liu ◽  
Lei Wang ◽  
Yi Tong

First-principle density functional theory simulations have been performed to predict the electronic structures and optoelectronic properties of ultrathin indium tin oxide (ITO) films, having different thicknesses and temperatures. Our results and analysis led us to predict that the physical properties of ultrathin films of ITO have a direct relation with film thickness rather than temperature. Moreover, we found that a thin film of ITO (1 nm thickness) has a larger absorption coefficient, lower reflectivity, and higher transmittance in the visible light region compared with that of 2 and 3 nm thick ITO films. We suggest that this might be due to the stronger surface strain effect in 1 nm thick ITO film. On the other hand, all three thin films produce similar optical spectra. Finally, excellent agreement was found between the calculated electrical resistivities of the ultrathin film of ITO and that of its experimental data. It is concluded that the electrical resistivities reduce along with the increase in film thickness of ITO because of the short strain length and limited bandgap distributions.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 440
Author(s):  
Yuan Deng ◽  
Shi-Qin Li ◽  
Qian Yang ◽  
Zhi-Wang Luo ◽  
He-Lou Xie

Smart windows can dynamically and adaptively adjust the light transmittance in non-energy or low-energy ways to maintain a comfortable ambient temperature, which are conducive to efficient use of energy. This work proposes a liquid crystal (LC) smart window with highly efficient near-infrared (NIR) response using carbon nanotubes grafted by biphenyl LC polymer brush (CNT-PDB) as the orientation layer. The resultant CNT-PDB polymer brush can provide the vertical orientation of LC molecules to maintain the initial transparency. At the same time, the smart window shows a rapid response to NIR light, which can quickly adjust the light transmittance to prevent sunlight from entering the room. Different from common doping systems, this method avoids the problem of poor compatibility between the LC host and photothermal conversion materials, which is beneficial for improving the durability of the device.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Chuan Lung Chuang ◽  
Ming Wei Chang ◽  
Nien Po Chen ◽  
Chung Chiang Pan ◽  
Chung Ping Liu

Indium tin oxide (ITO) thin films were grown on glass substrates by direct current (DC) reactive magnetron sputtering at room temperature. Annealing at the optimal temperature can considerably improve the composition, structure, optical properties, and electrical properties of the ITO film. An ITO sample with a favorable crystalline structure was obtained by annealing in fixed oxygen/argon ratio of 0.03 at 400°C for 30 min. The carrier concentration, mobility, resistivity, band gap, transmission in the visible-light region, and transmission in the near-IR regions of the ITO sample were-1.6E+20 cm−3,2.7E+01 cm2/Vs,1.4E-03 Ohm-cm, 3.2 eV, 89.1%, and 94.7%, respectively. Thus, annealing improved the average transmissions (400–1200 nm) of the ITO film by 16.36%. Moreover, annealing a copper-indium-gallium-diselenide (CIGS) solar cell at 400°C for 30 min in air improved its efficiency by 18.75%. The characteristics of annealing ITO films importantly affect the structural, morphological, electrical, and optical properties of ITO films that are used in solar cells.


2003 ◽  
Vol 8 (3) ◽  
pp. 534 ◽  
Author(s):  
Shu-jen Yeh ◽  
Omar S. Khalil ◽  
Charles F. Hanna ◽  
Stanislaw Kantor

2017 ◽  
Vol 35 (6) ◽  
pp. 061301 ◽  
Author(s):  
Ivan A. Starkov ◽  
Ilya A. Nyapshaev ◽  
Alexander S. Starkov ◽  
Sergey N. Abolmasov ◽  
Alexey S. Abramov ◽  
...  

2020 ◽  
Author(s):  
Chiara Da Pieve ◽  
Gabriela Kramer Marek ◽  
Jolanta Saczko ◽  
Anant Shah ◽  
Florian Raes

ABSTRACTAltough nanomaterial-mediated phototherapy has been extensively studied, the major antitumor success is limited to treating subcutaneous tumor on nude, lacking of clinically-relevant big animal study. Therefore, it is urgent to make further investigation on the typical big model, which is more closely related to the human body. In this work, niobium carbide (NbC) was selected as photoactive substance in virtue of its outstanding near infrared (NIR) absorption properties and resultantly NIR-triggered hyperthemia and reactive oxygen species generation for the synergetic photothermal and photodynamic effect. Moreover, macrophage was used as bio-carrier for the targeted delivery of NbC and the phagocytosis of macrophages was proved to be able to retain the photothermal/photodynamic effect of NbC. Resultantly, macrophage loaded NbC could realize complete removal of solid tumor on both of nude mice and big animal of rabbits. Meanwhile, two-dimensional ultrasound, shave wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) have been applied for monitoring the physiological evolutions of in vivo tumor post treatment, which clearly disclosed the photoablation process of tumor and provided a new way for the surveillance of tumor on the big animal study. Hence, large animal model study in this work presented higher clinical significance than the previous studies.SignificanceFindings show that niobium carbide carried by macrophages can be used for targeted phototherapy. At the same time, we applied the rabbit tumor model which is closer to the human body microenvironment.


Sign in / Sign up

Export Citation Format

Share Document