scholarly journals Bioinspired Microstructured Polymer Surfaces with Antireflective Properties

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2298
Author(s):  
Alexandre Emmanuel Wetzel ◽  
Nuria del Castillo Iniesta ◽  
Einstom Engay ◽  
Nikolaj Kofoed Mandsberg ◽  
Celine Schou Dinesen ◽  
...  

Over the years, different approaches to obtaining antireflective surfaces have been explored, such as using index-matching, interference, or micro- and nanostructures. Structural super black colors are ubiquitous in nature, and biomimicry thus constitutes an interesting way to develop antireflective surfaces. Moth-eye nanostructures, for example, are well known and have been successfully replicated using micro- and nanofabrication. However, other animal species, such as birds of paradise and peacock spiders, have evolved to display larger structures with antireflective features. In peacock spiders, the antireflective properties of their super black patches arise from relatively simple microstructures with lens-like shapes organized in tightly packed hexagonal arrays, which makes them a good candidate for cheap mass replication techniques. In this paper, we present the fabrication and characterization of antireflective microarrays inspired by the peacock spider’s super black structures encountered in nature. Firstly, different microarrays 3D models are generated from a surface equation. Secondly, the arrays are fabricated in a polyacrylate resin by super-resolution 3D printing using two-photon polymerization. Thirdly, the resulting structures are inspected using a scanning electron microscope. Finally, the reflectance and transmittance of the printed structures are characterized at normal incidence with a dedicated optical setup. The bioinspired microlens arrays display excellent antireflective properties, with a measured reflectance as low as 0.042 ± 0.004% for normal incidence, a wavelength of 550 nm, and a collection angle of 14.5°. These values were obtained using a tightly-packed array of slightly pyramidal lenses with a radius of 5 µm and a height of 10 µm.

Author(s):  
Y. Cheng ◽  
J. Liu ◽  
M.B. Stearns ◽  
D.G. Steams

The Rh/Si multilayer (ML) thin films are promising optical elements for soft x-rays since they have a calculated normal incidence reflectivity of ∼60% at a x-ray wavelength of ∼13 nm. However, a reflectivity of only 28% has been attained to date for ML fabricated by dc magnetron sputtering. In order to determine the cause of this degraded reflectivity the microstructure of this ML was examined on cross-sectional specimens with two high-resolution electron microscopy (HREM and HAADF) techniques.Cross-sectional specimens were made from an as-prepared ML sample and from the same ML annealed at 298 °C for 1 and 100 hours. The specimens were imaged using a JEM-4000EX TEM operating at 400 kV with a point-to-point resolution of better than 0.17 nm. The specimens were viewed along Si [110] projection of the substrate, with the (001) Si surface plane parallel to the beam direction.


2021 ◽  
Vol 120 (3) ◽  
pp. 9a
Author(s):  
Dushyant Mehra ◽  
Chiranjib Banerjee ◽  
Santosh Adhikari ◽  
Jacob M. Ritz ◽  
Angel Mancebo ◽  
...  

2012 ◽  
Vol 102 (3) ◽  
pp. 195a-196a
Author(s):  
Zeno Lavagnino ◽  
Francesca Cella Zanacchi ◽  
Emiliano Ronzitti ◽  
Ivan Coto Hernandez ◽  
Alberto Diaspro

2014 ◽  
Vol 8 (5) ◽  
pp. L76-L80 ◽  
Author(s):  
Andreas Eckstein ◽  
Guillaume Boucher ◽  
Aristide Lemaître ◽  
Pascal Filloux ◽  
Ivan Favero ◽  
...  

2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


Author(s):  
Yujun Hou ◽  
Chun Jiang

Since the growth of single layer of Si has emerged, silicene became a potential candidate material to make up the disadvantage of graphene. In this paper, the complex surface conductivity is applied to characterize the properties of silicene and we investigate the optical characterization of silicene-dielectric interfaces from IR to far UV range. The silicene-Si and silicene-Ge interfaces along both parallel and perpendicular polarization directions of electromagnetic field with normal incidence are considered in this work. The optical properties of the silicene-dielectric systems proposed in this paper lay a foundation for the performance of complex silicene-based optoelectronic devices such as sensors, detectors, filters, UV absorbers and so on.


Sign in / Sign up

Export Citation Format

Share Document