scholarly journals Polycaprolactone Composite Micro/Nanofibrous Material as an Alternative to Restricted Access Media for Direct Extraction and Separation of Non-Steroidal Anti-Inflammatory Drugs from Human Serum Using Column-Switching Chromatography

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2669
Author(s):  
Hedvika Raabová ◽  
Lucie Chocholoušová Havlíková ◽  
Jakub Erben ◽  
Jiří Chvojka ◽  
František Švec ◽  
...  

Application of the poly-ɛ-caprolactone composite sorbent consisting of the micro- and nanometer fibers for the on-line extraction of non-steroidal anti-inflammatory drugs from a biological matrix has been introduced. A 100 μL human serum sample spiked with ketoprofen, naproxen, sodium diclofenac, and indomethacin was directly injected in the extraction cartridge filled with the poly-ɛ-caprolactone composite sorbent. This cartridge was coupled with a chromatographic instrument via a six-port switching valve allowing the analyte extraction and separation within a single analytical run. The 1.5 min long extraction step isolated the analytes from the proteinaceous matrix was followed by their 13 min HPLC separation using Ascentis Express RP-Amide (100 × 4.6 mm, 5 µm) column. The recovery of all analytes from human serum tested at three concentration levels ranged from 70.1% to 118.7%. The matrix calibrations were carried out in the range 50 to 20,000 ng mL−1 with correlation coefficients exceeding 0.996. The detection limit was 15 ng mL−1, and the limit of quantification corresponded to 50 ng mL−1. The developed method was validated and successfully applied for the sodium diclofenac determination in real patient serum. Our study confirmed the ability of the poly-ɛ-caprolactone composite sorbent to remove the proteins from the biological matrix, thus serving as an alternative to the application of restricted-access media.

1986 ◽  
Vol 24 (4) ◽  
pp. 1031-1037
Author(s):  
Cristina Zona ◽  
Gianna Roscetti ◽  
Francesca Venturelli ◽  
L. Giorgio Roda

2015 ◽  
Author(s):  
◽  
Sinegugu Khulu

Human Serum Albumin (HSA) predominantly found in the blood plasma proteins, acts as a carrier for many drugs. In the present work binding interactions of eight arylpropionate non-steroidal anti-inflammatory drugs (NSAIDs) were studied with Human Serum Albumin HSA using Capillary Electrophoresis (CE) under physiological conditions. The concentration of HSA was kept constant (525 μM) whereas the drug concentrations were varied between 50-300 μM in each case. The Frontal analysis (FA) and Capillary Zone Electrophoresis (CZE) modes of CE were applied together with a mathematical modelling of the experimental results with a view to obtaining pharmacokinetic properties of each drug. The binding order of the drugs to HSA were established with the three methods together with the mathematical approach. Our studies revealed the presence of more than one binding sites for some of the available drugs. Additionally, molecular docking studies were conducted to establish the binding conformations of drugs in the binding pocket of the HSA. A very good correlation between the computed binding energies (docking) and the experimental binding constants were observed throughout this study. The logK values for all eight drugs were ranging from 3.37 - 4.56 for FA, 3.16 – 4.39 for CZE, and 3.48 – 5.30 for computational studies.


2009 ◽  
Vol 71 (1-2) ◽  
pp. 71-77 ◽  
Author(s):  
Najma Sultana ◽  
M. Saeed Arayne ◽  
Nighat Shafi ◽  
Farhan A. Siddiqui

2019 ◽  
Vol 19 (3) ◽  
pp. 684 ◽  
Author(s):  
Mohammad Salim Tabish ◽  
Nor Suhaila Mohamad Hanapi ◽  
Wan Nazihah Wan Ibrahim ◽  
Nor’ashikin Saim ◽  
Noorfatimah Yahaya

In this work, a bio-composite sorbent, alginate incorporated graphene oxide (Alg/GO) is prepared for the micro solid phase extraction of non-steroidal anti-inflammatory drugs (NSAIDs) from water samples. The sorbent was prepared in a suspended solution form at a ratio of 0.3:1 (w/v %) of graphene oxide (GO) and alginate (Alg). The chemical structure, morphology and surface area of the composite beads were characterized using Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Brunauer–Emmett–Teller (BET). GO showed good miscibility and well dispersion through intermolecular hydrogen bonds and electrostatic interactions within the Alg matrix. The synthesized sorbent was applied for the determination of the selected drugs in a tap water sample using micro-solid phase extraction technique and was analyzed by high-performance liquid chromatography-ultraviolet detector (HPLC-UV). The results showed good linearity in the range of 10–1000 µg L–1 with correlation coefficients (r ≥ 0.9979), low detection limits (LOD) between 3.1–4.6 µg L–1, excellent relative recoveries in the range of 99.6–102.1% and good reproducibility (RSD ≤ 3.9%). Thus, these validated results showed that Alg/GO could be potential and useful as a bio-composite sorbent for micro-solid phase extraction for the analysis of targeted drugs from aqueous matrices.


Sign in / Sign up

Export Citation Format

Share Document