scholarly journals All-in-One Self-Powered Human–Machine Interaction System for Wireless Remote Telemetry and Control of Intelligent Cars

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2711
Author(s):  
Tingting Zhang ◽  
Lingjie Xie ◽  
Junyan Li ◽  
Zheguan Huang ◽  
Hao Lei ◽  
...  

The components in traditional human–machine interaction (HMI) systems are relatively independent, distributed and low-integrated, and the wearing experience is poor when the system adopts wearable electronics for intelligent control. The continuous and stable operation of every part always poses challenges for energy supply. In this work, a triboelectric technology-based all-in-one self-powered HMI system for wireless remote telemetry and the control of intelligent cars is proposed. The dual-network crosslinking hydrogel was synthesized and wrapped with functional layers to fabricate a stretchable fibrous triboelectric nanogenerator (SF-TENG) and a supercapacitor (SF-SC), respectively. A self-charging power unit containing woven SF-TENGs, SF-SCs, and a power management circuit was exploited to harvest mechanical energy from the human body and provided power for the whole system. A smart glove designed with five SF-TENGs on the dorsum of five fingers acts as a gesture sensor to generate signal permutations. The signals were processed by the microcontroller and then wirelessly transmitted to the intelligent car for remote telemetry and control. This work is of paramount potential for the application of various terminal devices in self-powered HMI systems with high integration for wearable electronics.

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6366
Author(s):  
Zhiyuan Hu ◽  
Junpeng Wang ◽  
Yan Wang ◽  
Chuan Wang ◽  
Yawei Wang ◽  
...  

The human–machine interface plays an important role in the diversified interactions between humans and machines, especially by swaping information exchange between human and machine operations. Considering the high wearable compatibility and self-powered capability, triboelectric-based interfaces have attracted increasing attention. Herein, this work developed a minimalist and stable interacting patch with the function of sensing and robot controlling based on triboelectric nanogenerator. This robust and wearable patch is composed of several flexible materials, namely polytetrafluoroethylene (PTFE), nylon, hydrogels electrode, and silicone rubber substrate. A signal-processing circuit was used in this patch to convert the sensor signal into a more stable signal (the deviation within 0.1 V), which provides a more effective method for sensing and robot control in a wireless way. Thus, the device can be used to control the movement of robots in real-time and exhibits a good stable performance. A specific algorithm was used in this patch to convert the 1D serial number into a 2D coordinate system, so that the click of the finger can be converted into a sliding track, so as to achieve the trajectory generation of a robot in a wireless way. It is believed that the device-based human–machine interaction with minimalist design has great potential in applications for contact perception, 2D control, robotics, and wearable electronics.


2017 ◽  
Vol 5 (7) ◽  
pp. 1810-1815 ◽  
Author(s):  
Arunkumar Chandrasekhar ◽  
Nagamalleswara Rao Alluri ◽  
Balasubramaniam Saravanakumar ◽  
Sophia Selvarajan ◽  
Sang-Jae Kim

Scavenging of ambient dissipated mechanical energy addresses the limitations of conventional batteries by providing an auxiliary voltaic power source, and thus has significant potential for self-powered and wearable electronics.


2019 ◽  
Vol 14 (11) ◽  
pp. 1572-1581 ◽  
Author(s):  
Shamsuddin ◽  
Saeed Ahmed Khan ◽  
Ahmed Ali ◽  
Abdul Qadir Rahimoon ◽  
Palwasha Jalalzai

A self-powered mechanical energy harvesting system consists of the storage system and the energy scavenging TENG. Triboelectric nanogenerator includes a system which integrates a self-powered sensor and the power generator, this triboelectric nanogenerator has the potential to be used in a modern wearable electronic TENG. It has been reported that triboelectric nanogenerator working under complicated deformation like bending, stretching and twisting brings the main problem. Here we have fabricated the shape adaptive Triboelectric nanogenerator which solves all the deformation issues and can harvest the mechanical energy through human body motion in any deformation, the fabricated TENG is a self-powered sensor which can sense the different human activities and can monitor the health issues, the TENG stores the energy directly to the capacitor for powering the wearable electronics. A human skin based triboelectric nanogenerator was designed from the silicon rubber and the copper acetate-II used as the electrode, which makes the TENG flexible self-powered sensor, it can be stretched up to 200%. The stretchable nature and the flexibility of the human skin based silicon rubber triboelectric nanogenerator makes it the promising flexible and shape-adaptive energy harvesting TENG. The fabricated TENG generated the open circuit voltage 70 V and the short circuit current 11 μA and delivered the power 55 μW at the load of 80 MΩ. 42 LEDs were powered directly from the TENG. The fabricated TENG has human skin tactile property which does not harm the human skin while using it multiple times. The layer of copper acetate is completely coated with silicone rubber. The fabricated TENG is flexible, biocompatible and cost effective.


2020 ◽  
Vol 8 (48) ◽  
pp. 25995-26003
Author(s):  
Kequan Xia ◽  
Di Wu ◽  
Jiangming Fu ◽  
Nur Amin Hoque ◽  
Ying Ye ◽  
...  

This study provides a novel wearable TENG based on nickel–copper bimetallic hydroxide nanowrinkles (NC-TENG) to harvest the mechanical energy from human motion.


Author(s):  
Liangyao Yu ◽  
Ruyue Wang

Adaptive Cruise Control (ACC) is one of Advanced Driver Assistance Systems (ADAS) which takes over vehicle longitudinal control under necessary driving scenarios. Vehicle in ACC mode automatically adjusts speed to follow the preceding vehicle based on evaluation of the surrounding traffic. ACC reduces drivers’ workload as well as improves driving safety, energy economy, and traffic flow. This article provides a comprehensive review of the researches on ACC. Firstly, an overview of ACC controller and applied control theories are introduced. Their principles and performances are discussed. Secondly, several application cases of ACC control algorithms are presented. Then validation work including simulation, Hardware-in-the-Loop (HiL) test and on-road experiment is descripted to provide ideas for testing ACC systems for different aims and fidelities. In addition, studies on human-machine interaction are also summarized in this review to provide insights on development of ACC from the perspective of users. At last, challenges and potential directions in this field is discussed, including consideration of vehicle dynamics properties, contradiction between algorithm performance and computation as well as integration of ACC to other intelligent functions on vehicles.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2322
Author(s):  
Xiaofei Ma ◽  
Xuan Liu ◽  
Xinxing Li ◽  
Yunfei Ma

With the rapid development of the Internet of Things (IoTs), big data analytics has been widely used in the sport field. In this paper, a light-weight, self-powered sensor based on a triboelectric nanogenerator for big data analytics in sports has been demonstrated. The weight of each sensing unit is ~0.4 g. The friction material consists of polyaniline (PANI) and polytetrafluoroethylene (PTFE). Based on the triboelectric nanogenerator (TENG), the device can convert small amounts of mechanical energy into the electrical signal, which contains information about the hitting position and hitting velocity of table tennis balls. By collecting data from daily table tennis training in real time, the personalized training program can be adjusted. A practical application has been exhibited for collecting table tennis information in real time and, according to these data, coaches can develop personalized training for an amateur to enhance the ability of hand control, which can improve their table tennis skills. This work opens up a new direction in intelligent athletic facilities and big data analytics.


Nanoscale ◽  
2017 ◽  
Vol 9 (38) ◽  
pp. 14499-14505 ◽  
Author(s):  
Yanchao Mao ◽  
Nan Zhang ◽  
Yingjie Tang ◽  
Meng Wang ◽  
Mingju Chao ◽  
...  

A novel paper triboelectric nanogenerator (P-TENG) was successfully developed. The P-TENG can harvest mechanical energy from the action of turning book pages, and the generated electricity could directly light up 80 commercial white light-emitting diodes (LEDs).


Author(s):  
Sugato Hajra ◽  
Manisha Sahu ◽  
Aneeta Manjari Padhan ◽  
Jaykishon Swain ◽  
Basanta Kumar Panigrahi ◽  
...  

Harvesting mechanical energy from surroundings can be a promising power source for micro/nano-devices. The triboelectric nanogenerator (TENG) works in the principle of triboelectrification and electrostatic induction. So far, the metals...


Sign in / Sign up

Export Citation Format

Share Document