scholarly journals Study on Localized Surface Plasmon Coupling with Many Radiators

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3105
Author(s):  
Zhizhong Chen ◽  
Chuhan Deng ◽  
Xin Xi ◽  
Yifan Chen ◽  
Yulong Feng ◽  
...  

Localized surface plasmon (LSP) coupling with many radiators are investigated. The LSP is generated by excitation of laser or electron beam on the random Ag nano particles (NPs) and arrayed ones embedded in the p-GaN of green LEDs. They couple with the excitons or radiative recombination in the quantum well (QW) and electron beam, which enhance or suppress the luminescence of the radiators. The photoluminescence (PL) intensity of periodic Ag NPs can get as much as 4.5 times higher than that of bare LED. In addition to the periodic structure, the morphology of Ag NPs also affects the localized SP (LSP) resonance intensity and light scattering efficiency. In the finite difference time domain (FDTD) simulation, five x-polarized dipoles are approximated to five quantum wells. Considering the interaction between the five dipoles and their feedback effect on LSP, the enhancement effect of SP dipole coupling with Ag NPs is amplified and the energy dissipation is reduced. The enhancement of cathodoluminescence (CL) was also found in green LEDs with Ag NPs. The three-body model composed of two orthogonal dipoles and an Ag NP is used for 3D FDTD simulation. The LSP-QWs coupling effect is separated from the electron beam (e-beam)-LSP-QW system by linear approximation. Under the excitation of electron beam, the introduction of z-dipole greatly reduces the energy dissipation. In the cross-sectional sample, z-polarized dipoles in QWs show more coupling strength to the dipole and quadrupole modes of LSP. The perturbation theory is used to separate the LSP coupling effects to x-dipole and z-dipole. At last, the resonator and the antenna effects are discussed for LSP coupling at different positions to the Ag NP.

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 913
Author(s):  
Yifan Chen ◽  
Yulong Feng ◽  
Zhizhong Chen ◽  
Fei Jiao ◽  
Jinglin Zhan ◽  
...  

Ag nanoparticles (NPs) are filled in a photonic crystal (PhC) hole array on green light emitting diodes (LEDs). The localized surface plasmon (LSP)–quantum well (QW) coupling effect is studied by measuring the cathodoluminescence (CL) spectra impinging at the specific spots on the Ag NPs. Twenty-six percent and fifty-two percent enhancements of the CL intensities are obtained at the center and edge of the Ag NP, respectively, compared to the result that the electron-beam (e-beam) excites the QW directly. To illustrate the coupling process of the three-body system of e-beam–LSP–QW, a perturbation theory combining a three-dimensional (3D) finite difference time domain (FDTD) simulation is put forward. The effects of the polarization orientation of the dipole and the field symmetry of the LSP on the LSP–QW coupling are also discussed.


2017 ◽  
Vol 897 ◽  
pp. 634-637
Author(s):  
Yi Wei ◽  
Ahmed Fadil ◽  
Hai Yan Ou

Silver (Ag) nanoparticles (NPs) were deposited on the surface of bulk Nitrogen-Boron co-doped 6H silicon carbide (SiC), and the Ag NPs were observed to induce localized surface plasmons (LSP) resonances on the SiC substrate, which was expected to improve the internal quantum efficiency (IQE) of the emissions of the donor-acceptor pairs of the SiC substrate. Room-temperature measurements of photoluminescence (PL), transmittance and time-resolved photoluminescence (TRPL) were applied to characterize the LSP resonances. Through the finite-difference time-domain (FDTD) simulation of the LSP resonance of an Ag nanoparticle on the SiC substrate, it is predicted that when the diameter of the cross section on the xy plane of the Ag nanoparticle is greater than 225 nm, the LSP starts to enhance the PL intensity. With implementation of a 3rd order exponential decay fitting model to the TRPL results, it is found that the average minority carrier lifetime of the SiC substrate decreased.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1557 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
Govar Hussein ◽  
M. A. Brza ◽  
Sewara J. Mohammed ◽  
R. T. Abdulwahid ◽  
...  

Interconnected spherical metallic silver nanoparticles (Ag NPs) were synthesized in the current study using a green chemistry method. The reduction of silver ions to Ag NPs was carried out with low-cost and eco-friendly quince leaves. For the first time, it was confirmed that the extract solution of quince leaves could be used to perform green production of Ag NPs. Fourier transform infrared spectroscopy (FTIR) was conducted to identify the potential biomolecules that were involved in the Ag NPs. The results depicted that the biosynthesis of Ag NPs through the extract solution of quince leaf was a low-cost, clean, and safe method, which did not make use of any contaminated element and hence, had no undesirable effects. The majority of the peaks in the FTIR spectrum of quince leaf extracts also emerged in the FTIR spectrum of Ag NPs but they were found to be of less severe intensity. The silver ion reduction was elaborated in detail on the basis of the FTIR outcomes. In addition, through X-ray diffraction (XRD) analysis, the Ag NPs were also confirmed to be crystalline in type, owing to the appearance of distinct peaks related to the Ag NPs. The creation of Ag NPs was furthermore confirmed by using absorption spectrum, in which a localized surface plasmon resonance (LSPR) peak at 480 nm was observed. The LSPR peak achieved in the present work was found to be of great interest compared to those reported in literature. Field emission scanning electron microscopy (FESEM) images were used to provide the morphology and grain size of Ag NPs. It was shown from the FESEM images that the Ag NPs had interconnected spherical morphology.


2010 ◽  
Vol 139-141 ◽  
pp. 1554-1557 ◽  
Author(s):  
Xi Xi Huang ◽  
Zhong Cao ◽  
Yong Le Liu ◽  
Yi Min Dai ◽  
Ju Lan Zeng ◽  
...  

An novel optical nano biosensor based on gold capped nano-particles for detecting binding events between ligands and receptor molecules as well as interactions among proteins without use of labels has been presented in this paper. The optical properties of nano-sized gold particles exhibiting pronounced adsorption in the visible region which called as localized surface plasmon resonance (LSPR) have been exploited, whose peak wavelengths depended exquisitely on the refractive index of the surrounding. In comparison with surface plasmon resonance (SPR) technology, the optical nano biosensor possessed high sensitivity, surprisingly low “bulk effect”, ease of preparation, and low-cost polymer based fabrication, which opened a promising bioanalytical application in practice.


1999 ◽  
Vol 60 (7) ◽  
pp. 5029-5033 ◽  
Author(s):  
J. R. Krenn ◽  
J. C. Weeber ◽  
A. Dereux ◽  
E. Bourillot ◽  
J. P. Goudonnet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document