scholarly journals Temperature-Dependent Photoluminescence of Manganese Halide with Tetrahedron Structure in Anti-Perovskites

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3310
Author(s):  
Yijie Xia ◽  
Shuaishuai Du ◽  
Pengju Huang ◽  
Luchao Wu ◽  
Siyu Yan ◽  
...  

The temperature-dependent photoluminescence (PL) properties of an anti-perovskite [MnBr4]BrCs3 sample in the temperature range of 78–500 K are studied in the present work. This material exhibits unique performance which is different from a typical perovskite. Experiments showed that from room temperature to 78 K, the luminous intensity increased as the temperature decreased. From room temperature to 500 K, the photoluminescence intensity gradually decreased with increasing temperature. Experiments with varying temperatures repeatedly showed that the emission wavelength was very stable. Based on the above-mentioned phenomenon of the changing photoluminescence under different temperatures, the mechanism is deduced from the temperature-dependent characteristics of excitons, and the experimental results are explained on the basis of the types of excitons with different energy levels and different recombination rates involved in the steady-state PL process. The results show that in the measured temperature range of 78–500 K, the steady-state PL of [MnBr4]BrCs3 had three excitons with different energy levels and recombination rates participating. The involved excitons with the highest energy level not only had a high radiative recombination rate, but a high non-radiative recombination rate as well. The excitons at the second-highest energy level had a similar radiative recombination rate to the lowest energy level excitons and a had high non-radiative recombination rate. These excitons made the photoluminescence gradually decrease with increasing temperature. This may be the reason for this material’s high photoluminescence efficiency and low electroluminescence efficiency.

2014 ◽  
Vol 92 (7/8) ◽  
pp. 561-564
Author(s):  
Chisato Ogihara ◽  
Yuta Shintoku ◽  
Kei Yamaguchi ◽  
Kazuo Morigaki

Recombination rates at radiative defects in the hydrogenated amorphous silicon films prepared at various preparation conditions, estimated from intensities and characteristic lifetimes of defect photoluminescence, have been investigated. The temperature variations of the radiative recombination rate are discussed in terms of a model in which the increase of the radiative recombination rate is attributed to the thermal excitation of the holes from deep and strongly localised tail states to shallow and more extended tail states. The temperature variations of nonradiative recombination rate are discussed in terms of a theory for the case of strong electron–phonon coupling.


2019 ◽  
Vol 57 (3A) ◽  
pp. 41
Author(s):  
Thuy Thi Pham

This paper reports on the temperature-dependent photoluminescence of porous GaP under the 532-nm excitation. Porous GaP formed by electrochemical anodization of (111)-oriented bulk material exhibits green emission at 550 nm (2.25 eV) and red emission at 770 nm (1.65 eV) at room temperature. In the temperature range from 25 K to 275 K intensity from the green emission gradually decreases when the temperature increases. Additionally, peak position of the green luminescence band shifts to lower energy with increasing temperature and the same the GaP band gap narrowing with temperature. This means a contribution of lattice vibrations.


2006 ◽  
Vol 21 (2) ◽  
pp. 162-166
Author(s):  
N V Kryzhanovskaya ◽  
P Zimmer ◽  
N N Ledentsov ◽  
A Hoffmann ◽  
D Bimberg ◽  
...  

1999 ◽  
Vol 588 ◽  
Author(s):  
S. Pizzini ◽  
S. Binetti ◽  
M. Acciarri ◽  
M. Casati

AbstractIt is well known that the sharp, room temperature luminescence emission at 1.54 μm from dislocated silicon has set off a great interest for this material in view of its applications in the third window of optical telecommunications. For this reason the dislocation related luminescence in silicon addressed recently a number of investigation aimed at understanding the mechanism of light emission. The problem is still unsolved as most of the experiments done gave contradictory answers to the main questions open, which concern the intrinsic or extrinsic nature of dislocation luminescence and the effect on it of reconstruction, interaction or passivation processes, possibly assisted by metallic or non-metallic impurities.In order to go more insight on the problem, we started a systematic work on CZ silicon, aimed at understanding the properties of dislocation luminescence. The identification of the energy levels involved in the different dislocation PL bands has been obtained.


2010 ◽  
Vol 74 (5) ◽  
pp. 871-885 ◽  
Author(s):  
M. Nagashima ◽  
T. Armbruster ◽  
T. Hainschwang

AbstractThe structure of hibonite from Myanmar (space group P63/mmc, Z = 2, at room temperature a = 5.5909(1), c = 21.9893(4) Å), with simplified formula CaAl12O19 and composition (Ca0.99Na0.01)Σ1.00 was investigated between temperatures of 100 K and 923 K by single-crystal X-ray diffraction methods. Structure refinements have been performed at 100, 296, 473 and 923 K. In hibonite from Myanmar, Ti substitutes for Al mainly at the octahedral Al4 site and, to a lesser degree, at the trigonal bipyramidal site, Al2. The Al4 octahedra build face-sharing dimers. If Ti4+ substitutes at Al4, adjacent cations repulse each other for electrostatic reasons, leading to off-centre cation displacement associated with significant bond-length distortion compared to synthetic (Ti-free) CaAl12O19. Most Mg and smaller proportions of Zn and Si are assigned to the tetrahedral Al3 site. 12-coordinated Ca in hibonite replaces oxygen in a closest-packed layer. However, Ca is actually too small for this site and engages in a ‘rattling-type’ motion with increasing temperature. For this reason, Ca does not significantly increase thermal expansion coefficients of hibonite. The expansion of natural Ti,Mg-rich hibonite between 296 and 923 K along the x and the z axes is αa = 7.64×10–6 K–1 and αc = 11.19×10–6 K–1, respectively, and is thus very similar to isotypic, synthetic CaAl12O19 and LaMgAl11O19 (LMA).


Sign in / Sign up

Export Citation Format

Share Document