scholarly journals A Review of Microbial Mediated Iron Nanoparticles (IONPs) and Its Biomedical Applications

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 130
Author(s):  
Muhammad Nadeem ◽  
Rijma Khan ◽  
Nausheen Shah ◽  
Ishrat Rehman Bangash ◽  
Bilal Haider Abbasi ◽  
...  

Nanotechnology is a booming avenue in science and has a multitude of applications in health, agriculture, and industry. It exploits materials’ size at nanoscale (1–100 nm) known as nanoparticles (NPs). These nanoscale constituents are made via chemical, physical, and biological methods; however, the biological approach offers multiple benefits over the other counterparts. This method utilizes various biological resources for synthesis (microbes, plants, and others), which act as a reducing and capping agent. Among these sources, microbes provide an excellent platform for synthesis and have been recently exploited in the synthesis of various metallic NPs, in particular iron. Owing to their biocompatible nature, superparamagnetic properties, small size efficient, permeability, and absorption, they have become an integral part of biomedical research. This review focuses on microbial synthesis of iron oxide nanoparticles using various species of bacteria, fungi, and yeast. Possible applications and challenges that need to be addressed have also been discussed in the review; in particular, their antimicrobial and anticancer potentials are discussed in detail along with possible mechanisms. Moreover, some other possible biomedical applications are also highlighted. Although iron oxide nanoparticles have revolutionized biomedical research, issues such as cytotoxicity and biodegradability are still a major bottleneck in the commercialization of these nanoparticle-based products. Addressing these issues should be the topmost priority so that the biomedical industry can reap maximum benefit from iron oxide nanoparticle-based products.

Nanomedicine ◽  
2021 ◽  
Author(s):  
Shalini Sharma ◽  
Nisha Lamichhane ◽  
Parul ◽  
Tapas Sen ◽  
Indrajit Roy

The role and scope of functional inorganic nanoparticles in biomedical research is well established. Among these, iron oxide nanoparticles (IONPs) have gained maximum attention as they can provide targeting, imaging and therapeutic capabilities. Furthermore, incorporation of organic optical probes with IONPs can significantly enhance the scope and viability of their biomedical applications. Combination of two or more such applications renders multimodality in nanoparticles, which can be exploited to obtain synergistic benefits in disease detection and therapy viz theranostics, which is a key trait of nanoparticles for advanced biomedical applications. This review focuses on the use of IONPs conjugated with organic optical probe/s for multimodal diagnostic and therapeutic applications in vivo.


2015 ◽  
Vol 22 (15) ◽  
pp. 1808-1828 ◽  
Author(s):  
Diana Couto ◽  
Marisa Freitas ◽  
Felix Carvalho ◽  
Eduarda Fernandes

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmad Abulfathi Umar ◽  
Muhamad Fazly Abdul Patah ◽  
Faisal Abnisa ◽  
Wan Mohd Ashri Wan Daud

AbstractMagnetic hyperthermia therapy (MHT) is a highly promising therapeutic modality for the treatment of different kinds of cancers and malignant tumors. The therapy is based on the concept that; iron oxide nanoparticles deposited at cancer sites can generate heat when exposed to an alternating current magnetic field or near infrared radiation and consequently destroying only the cancer cells by exploiting their vulnerability to heat. The fact that the treatment is at molecular level and that iron oxide nanoparticles provide more guided focus heating justifies its efficacy over treatment such as surgery, radiation therapy and chemotherapy. Nevertheless, the spread of MHT as the next-generation therapeutics has been shadowed by insufficient heating especially at the in vivo stage. This can be averted by modifying the iron oxide nanoparticle structure. To this end, various attempts have been made by developing a magnetic hybrid nanostructure capable of generating efficient heat. However, the synthesis method for each component (of the magnetic hybrid nanostructure) and the grafting process is now an issue. This has a direct effect on the performance of the magnetic hybrid nanostructure in MHT and other applications. The main objective of this review is to detail out the different materials, methods and characterization techniques that have been used so far in developing magnetic hybrid nanostructure. In view of this, we conducted a comprehensive review and present a road map for developing a magnetic hybrid nanostructure that is capable of generating optimum heat during MHT. We further summarize the various characterization techniques and necessary parameters to study in validating the efficiency of the magnetic hybrid nanostructure. Hopefully, this contribution will serve as a guide to researchers that are willing to evaluate the properties of their magnetic hybrid nanostructure.


2020 ◽  
Vol 122 ◽  
pp. 109371 ◽  
Author(s):  
Samson O. Aisida ◽  
Paul A. Akpa ◽  
Ishaq Ahmad ◽  
Ting-kai Zhao ◽  
M. Maaza ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (27) ◽  
pp. 12905-12914 ◽  
Author(s):  
Manman Xie ◽  
Shijia Liu ◽  
Christopher J. Butch ◽  
Shaowei Liu ◽  
Ziyang Wang ◽  
...  

Superparamagnetic iron oxide nanoparticles (SPIONs) have a history of clinical use as contrast agents in T2 weighted MRI, though relatively low T2 relaxivity has caused them to fall out of favor as new faster MRI techniques have gained prominence.


2013 ◽  
Vol 9 (9) ◽  
pp. 1556-1569 ◽  
Author(s):  
Alice Panariti ◽  
Barbara Lettiero ◽  
Rodica Alexandrescu ◽  
Maddalena Collini ◽  
Laura Sironi ◽  
...  

Nanoscale ◽  
2015 ◽  
Vol 7 (18) ◽  
pp. 8209-8232 ◽  
Author(s):  
Donglu Shi ◽  
M. E. Sadat ◽  
Andrew W. Dunn ◽  
David B. Mast

Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications.


Langmuir ◽  
2013 ◽  
Vol 29 (34) ◽  
pp. 10850-10858 ◽  
Author(s):  
Vinith Yathindranath ◽  
Zhizhi Sun ◽  
Matthew Worden ◽  
Lynda J. Donald ◽  
James A. Thliveris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document