scholarly journals Effect of Surface Coating of Gold Nanoparticles on Cytotoxicity and Cell Cycle Progression

Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1063 ◽  
Author(s):  
Qian Li ◽  
Chun Huang ◽  
Liwei Liu ◽  
Rui Hu ◽  
Junle Qu

Gold nanoparticles (GNPs) are usually wrapped with biocompatible polymers in biomedical field, however, the effect of biocompatible polymers of gold nanoparticles on cellular responses are still not fully understood. In this study, GNPs with/without polymer wrapping were used as model probes for the investigation of cytotoxicity and cell cycle progression. Our results show that the bovine serum albumin (BSA) coated GNPs (BSA-GNPs) had been transported into lysosomes after endocytosis. The lysosomal accumulation had then led to increased binding between kinesin 5 and microtubules, enhanced microtubule stabilization, and eventually induced G2/M arrest through the regulation of cadherin 1. In contrast, the bare GNPs experienced lysosomal escape, resulting in microtubule damage and G0/G1 arrest through the regulation of proliferating cell nuclear antigen. Overall, our findings showed that both naked and BSA wrapped gold nanoparticles had cytotoxicity, however, they affected cell proliferation via different pathways. This will greatly help us to regulate cell responses for different biomedical applications.

Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4097-4103 ◽  
Author(s):  
Yasuhito Ide ◽  
Daisuke Tsuchimoto ◽  
Yohei Tominaga ◽  
Manabu Nakashima ◽  
Takeshi Watanabe ◽  
...  

Abstract APEX2/APE2 is a secondary mammalian apurinic/apyrimidinic endonuclease that associates with proliferating cell nuclear antigen (PCNA), and the progression of S phase of the cell cycle is accompanied by its expression. To determine the biologic significance of APEX2, we established APEX2-null mice. These mice were about 80% the size of their wild-type littermates and exhibited a moderate dyshematopoiesis and a relatively severe defect in lymphopoiesis. A significant accumulation of both thymocytes and mitogen-stimulated splenocytes in G2/M phase was seen in APEX2-null mice compared with the wild type, indicating that APEX2 is required for proper cell cycle progression of proliferating lymphocytes. Although APEX2-null mice exhibited an attenuated immune response against ovalbumin in comparison with wild-type mice, they produced both antiovalbumin immunoglobulin M (IgM) and IgG, indicating that class switch recombination can occur even in the absence of APEX2. (Blood. 2004;104: 4097-4103)


1987 ◽  
Vol 130 (3) ◽  
pp. 336-343 ◽  
Author(s):  
Charles V. Clevenger ◽  
Alan L. Epstein ◽  
Kenneth D. Bauer

1993 ◽  
Vol 105 (1) ◽  
pp. 69-80 ◽  
Author(s):  
M. Baptist ◽  
J.E. Dumont ◽  
P.P. Roger

In this study, experimental conditions are described that allowed us to follow the fate of the DNA polymerase delta-associated proliferating cell nuclear antigen (PCNA), by immunolabeling during the overall cell cycle. Differences in subcellular localization or the presence of PCNA allowed us to identify each phase of the cell cycle. Using these cell cycle markers in dog thyroid epithelial cells in primary culture, we found unexpected differences in cell cycle kinetics, in response to stimulations through cAMP-dependent and cAMP-independent pathways. These provide a new dimension to the view that the two pathways are largely separate, but co-operate on DNA synthesis initiation. More precisely, thyrotropin (TSH), acting via cAMP, exerts a potent triggering effect on DNA synthesis, associated with a precocious induction of PCNA appearance. This constitutes the major influence of TSH (cAMP) in determining cell cycle progression, which is only partly moderated by TSH-dependent lengthening of S- and G2-phases.


1996 ◽  
Vol 16 (7) ◽  
pp. 3698-3706 ◽  
Author(s):  
C L Wu ◽  
M Classon ◽  
N Dyson ◽  
E Harlow

Unregulated expression of the transcription factor E2F promotes the G1-to-S phase transition in cultured mammalian cells. However, there has been no direct evidence for an E2F requirement in this process. To demonstrate that E2F is obligatory for cell cycle progression, we attempted to inactivate E2F by overexpressing dominant-negative forms of one of its heterodimeric partners, DP-1. We dissected the functional domains of DP-1 and separated the region that facilitate heterodimer DNA binding from the E2F dimerization domain. Various DP-1 mutants were introduced into cells via transfection, and the cell cycle profile of the transfected cells was analyzed by flow cytometry. Expression of wild-type DP-1 or DP-1 mutants that bind to both DNA and E2F drove cells into S phase. In contrast, DP-1 mutants that retained E2F binding but lost DNA binding arrested cells in the G1 phase of the cell cycle. The DP-1 mutants that were unable to bind DNA resulted in transcriptionally inactive E2F complexes, suggesting that the G1 arrest is caused by formation of defective E2F heterodimers. Furthermore, the G1 arrest instigated by these DP-1 mutants could be rescued by coexpression of wild-type E2F or DP protein. These experiments define functional domains of DP and demonstrate a requirement for active E2F complexes in cell cycle progression.


2018 ◽  
Author(s):  
Benjamin R. Topacio ◽  
Evgeny Zatulovskiy ◽  
Sandra Cristea ◽  
Shicong Xie ◽  
Carrie S. Tambo ◽  
...  

SummaryThe cyclin-dependent kinases Cdk4 and Cdk6 form complexes with D-type cyclins to drive cell proliferation. A well-known target of cyclin D-Cdk4,6 is the retinoblastoma protein, Rb, which inhibits cell cycle progression until its inactivation by phosphorylation. However, the role of cyclin D-Cdk4,6 phosphorylation of Rb in cell cycle progression is unclear because Rb can be phosphorylated by other cyclin-Cdk complexes and cyclin D-Cdk4,6 complexes have other targets that may drive cell division. Here, we show that cyclin D-Cdk4,6 docks one side of an alpha-helix in the C-terminus of Rb, which is not recognized by cyclins E, A, and B. This helix-based docking mechanism is shared by the p107 and p130 Rb-family members across metazoans. Mutation of the Rb C-terminal helix prevents phosphorylation, promotes G1 arrest, and enhances Rb’s tumor suppressive function. Our work conclusively demonstrates that the cyclin D-Rb interaction drives cell division and defines a new class of cyclin-based docking mechanisms.


2019 ◽  
Vol 10 (1) ◽  
pp. 130-134 ◽  
Author(s):  
Saeed Noorolyai ◽  
Elham Baghbani ◽  
Leili Aghebati Maleki ◽  
Amir Baghbanzadeh Kojabad ◽  
Dariush Shanehbansdi ◽  
...  

Purpose: Colorectal cancer (CRC) remains a universal and lethal cancer owing to metastatic and relapsing disease. Currently, the role of microRNAs has been checked in tumorigeneses. Numerous studies have revealed that between the tumor suppressor miRNAs, the reduced expression of miR-146a-5p and -193a-5p in several cancers including CRC tissues are related with tumor progression and poor prognosis of patients. The purpose of this study is to examine the role of miR-146 a-5p and -193 a-5p in CRC cell cycle progression. Methods: The miR-193a-5p and -146 a-5p mimics were transfected into HT-29 CRC cells via jetPEI transfection reagent and their impact was assessed on p53, cyclin B, and NF-kB gene expression. The inhibitory effect of these miRNAs on cell cycle was assessed by flow cytometry. The consequence of miR-193a-5p and miR-146 a-5p on the protein expression level of Murine double minute 2 (MDM2) was assessed by western blotting. Results: miR193a-5p and -146a-5p regulated the expression of MDM2 protein and p53, cyclin B, and NF-kB gene expression in CRC cells. Treatment of HT-29 cells with miRNA-146a-5p and -193a-5p induced G1 cell cycle arrest. Conclusion: The findings of our study suggest that miR146a-5p and -193a-5p may act as a potential tumor suppressor by their influence on cell cycle progression in CRC cells. Thus, miRNA-146a-5p and -193a-5p restoration may be recommended as a potential therapeutic goal in the treatment of CRC patients.


Author(s):  
Takashi Hashimoto ◽  
Maki Kobayashi ◽  
Kazuki Kanazawa

Objective: The effects of 6-MSITC on cell cycle progression were investigated in quiescent mouse epidermal JB6 cells. Background: 6-Methylsulfinylhexyl isothiocyanate (6-MSITC) derived from wasabi (Wasabia japonica) has been reported to prevent tumor development in vivo. Material and methods: Treatment with epidermal growth factor (EGF) to quiescent JB6 cells, which were serum-starved for 36 h, promoted cell cycle progression from the G0/G1 phase to the S phase. Effects of pretreatment with 6-MSITC on cell cycle progression were estimated by flowcytometry and real-time RT-PCR. Results: Pretreatment with 6-MSITC at 0.25-1.0 μg/ml prior to the growth stimulation with EGF significantly inhibited cell cycle progression. Pretreatment with 6-MSITC inhibited the gene expression of DNA synthesis-related proteins cyclin A2, dumbbell former 4, and proliferating cell nuclear antigen. Conclusion: These results showed that 6-MSITC inhibits cell cycle progression in quiescent cells, accompanied by the inhibition of gene expression of DNA synthesis proteins.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 881-881
Author(s):  
Hee-Don Chae ◽  
Bryan Mitton ◽  
Kathleen Sakamoto

Abstract CREB (cAMP Response Element Binding protein) is a transcription factor overexpressed in normal and neoplastic myelopoiesis and regulates cell cycle progression, although its oncogenic mechanism has not been well characterized. Replication Factor C3 (RFC3), a 38 kDa subunit of the RFC complex, is required for chromatin loading of proliferating cell nuclear antigen (PCNA) which is a sliding clamp platform for recruiting numerous proteins in DNA replication and repair processes. CREB1 expression was coupled with RFC3 expression during the G1/S progression in the KG-1 acute myeloid leukemia (AML) cell line, suggesting that RFC3 and CREB1 might be target genes of E2F, a key transcriptional regulator of the G1/S progression. Though there were two potential E2F binding sites in the RFC3 promoter region, chromatin immunoprecipitation assays provided no evidence for E2F1 binding to the RFC3 promoter, whereas E2F1 could directly act on the CREB1 expression. Treatment with the cyclin-dependent kinase (CDK) inhibitor AT7519 decreased expression of CREB1 and RFC3 as well as well-known E2F target genes such as CCNE1, CCNA2 and CCNB1 in KG-1 cells. These results indicate that CREB1 overexpression, a potentially important prognostic marker in leukemia patients, may be associated with dysregulated CDK-E2F activity in leukemia. There was also a direct correlation between the expression of RFC3 and CREB1 in human AML cell lines as well as in AML cells from patients. CREB interacted directly with the CRE site in RFC3 promoter region. CREB knockdown primarily inhibited G1/S cell cycle transition, decreasing expression of RFC3 as well as PCNA loading onto chromatin. Exogenous expression of RFC3 was sufficient to rescue the impaired G1/S progression and PCNA chromatin loading [Chromatin-bound PCNA-positive cells (%), control vs. CREB-knockdown vs. CREB-knockdown with RFC3 overexpression, 8h after release from mitotic arrest: 66.87 +/– 0.90 vs. 24.77 +/– 0.99 vs. 79.17 +/– 0.12, n=3, p< 0.01, mean +/– SEM] caused by CREB knockdown. Taken together, our results suggest that RFC3 may play a role in neoplastic myelopoiesis by promoting the G1/S progression, and its expression is regulated by CREB. These data provide new insight into CREB-driven regulation of the cell cycle in AML cells, and may contribute to leukemogenesis associated with CREB overexpression. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 46 ◽  
pp. 63-76 ◽  
Author(s):  
Kersti Alm ◽  
Stina Oredsson

Cell-cycle progression is a one-way journey where the cell grows in size to be able to divide into two equally sized daughter cells. The cell cycle is divided into distinct consecutive phases defined as G1 (first gap), S (synthesis), G2 (second gap) and M (mitosis). A non-proliferating cell, which has retained the ability to enter the cell cycle when it receives appropriate signals, is in G0 phase, and cycling cells that do not receive proper signals leave the cell cycle from G1 into G0. One of the major events of the cell cycle is the duplication of DNA during S-phase. A group of molecules that are important for proper cell-cycle progression is the polyamines. Polyamine biosynthesis occurs cyclically during the cell cycle with peaks in activity in conjunction with the G1/S transition and at the end of S-phase and during G2-phase. The negative regulator of polyamine biosynthesis, antizyme, shows an inverse activity compared with the polyamine biosynthetic activity. The levels of the polyamines, putrescine, spermidine and spermine, double during the cell cycle and show a certain degree of cyclic variation in accordance with the biosynthetic activity. When cells in G0/G1-phase are seeded in the presence of compounds that prevent the cell-cycle-related increases in the polyamine pools, the S-phase of the first cell cycle is prolonged, whereas the other phases are initially unaffected. The results point to an important role for polyamines with regard to the ability of the cell to attain optimal rates of DNA replication.


Sign in / Sign up

Export Citation Format

Share Document