scholarly journals Cost-Effective Copper–Nickel-Based Triboelectric Nanogenerator for Corrosion-Resistant and High-Output Self-Powered Wearable Electronic Systems

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 700 ◽  
Author(s):  
Kequan Xia ◽  
Zhiwei Xu ◽  
Zhiyuan Zhu ◽  
Hongze Zhang ◽  
Yong Nie

Recent years, triboelectric nanogenerators (TENGs) have attracted increased attention from researchers worldwide. Owing to their conductivity and triboelectric characteristics, metal materials can be made as both triboelectric materials and conductive electrodes. However, the surface of typical metals (such as copper, aluminum, and iron) is likely to be corroded when the sweat generated by human-body movement drops on the surface of TENGs, as this corrosion is detrimental to the output performance of TENGs. In this work, we proposed a novel corrosion-resistant copper–nickel based TENG (CN-TENG). Copper–nickel alloy conductive tape and polytetrafluoroethylene (PTFE) tape played the role of the triboelectric materials, and polymethyl methacrylate (PMMA) was utilized as the supporting part. The conductive copper–nickel alloy tape also served as a conductive electrode. The open-circuit voltage (VOC) and short-circuit current (ISC) can arrive at 196.8 V and 6 μA, respectively. Furthermore, peak power density values of 45 μW/cm2 were realized for the CN-TENG. A series of experiments confirmed its corrosion-resistant property. The approximate value of VOC for the fabricated TENG integrated into the shoe reached 1500 V, which is capable of driving at least 172 high-power LEDs in series. The results of this research provide a workable method for supporting corrosion-resistant self-powered wearable electronics.

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2763
Author(s):  
Xiaotao Han ◽  
Qiyuan Zhang ◽  
Junbin Yu ◽  
Jinsha Song ◽  
Zhengyang Li ◽  
...  

In this paper, we designed a triboelectric acceleration sensor with excellent multiple parameters. To more easily detect weak vibrations, the sensor was founded on a multilayer suspension structure. To effectively improve the electrical properties of the sensor, a surface roughening and internal doping friction film, which was refined with a room temperature vulcanized silicone rubber (RTV) and some thermoplastic polyurethanes (TPU) powder in a certain proportion, was integrated into the structure. It was found that the optimization of the RTV film increases the open circuit voltage and short circuit current of the triboelectric nanogenerator (TENG) by 223% and 227%, respectively. When the external vibration acceleration is less than 4 m/s2, the sensitivity and linearity are 1.996 V/(m/s2) and 0.999, respectively. Additionally, when it is in the range between 4 m/s2 and 15 m/s2, those are 23.082 V/(m/s2) and 0.975, respectively. Furthermore, the sensor was placed in a simulated truck vibration environment, and its self-powered monitoring ability validated by experiments in real time. The results show that the designed sensor has strong practical value in the field of monitoring mechanical vibration acceleration.


2019 ◽  
Vol 14 (11) ◽  
pp. 1572-1581 ◽  
Author(s):  
Shamsuddin ◽  
Saeed Ahmed Khan ◽  
Ahmed Ali ◽  
Abdul Qadir Rahimoon ◽  
Palwasha Jalalzai

A self-powered mechanical energy harvesting system consists of the storage system and the energy scavenging TENG. Triboelectric nanogenerator includes a system which integrates a self-powered sensor and the power generator, this triboelectric nanogenerator has the potential to be used in a modern wearable electronic TENG. It has been reported that triboelectric nanogenerator working under complicated deformation like bending, stretching and twisting brings the main problem. Here we have fabricated the shape adaptive Triboelectric nanogenerator which solves all the deformation issues and can harvest the mechanical energy through human body motion in any deformation, the fabricated TENG is a self-powered sensor which can sense the different human activities and can monitor the health issues, the TENG stores the energy directly to the capacitor for powering the wearable electronics. A human skin based triboelectric nanogenerator was designed from the silicon rubber and the copper acetate-II used as the electrode, which makes the TENG flexible self-powered sensor, it can be stretched up to 200%. The stretchable nature and the flexibility of the human skin based silicon rubber triboelectric nanogenerator makes it the promising flexible and shape-adaptive energy harvesting TENG. The fabricated TENG generated the open circuit voltage 70 V and the short circuit current 11 μA and delivered the power 55 μW at the load of 80 MΩ. 42 LEDs were powered directly from the TENG. The fabricated TENG has human skin tactile property which does not harm the human skin while using it multiple times. The layer of copper acetate is completely coated with silicone rubber. The fabricated TENG is flexible, biocompatible and cost effective.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Lu Cheng ◽  
Yi Xi ◽  
Chenguo Hu ◽  
Xule Yue ◽  
Guo Wang

AbstractAs we known, nanogenerator (NG) can be used in many fields, such as sensors, energy harvesting, biomedical application, and so on. Sometimes, the object that is a part of NG cannot be electrically connected to the load because it is a mobile object. To harvest energy from such a case and reduce the fabrication cost and achieve some new applications such as touch screen products, we need to find new method to fabricate NG. To attain the higher output current and output power, moreover, here we report a flexible and easy fabricated single electrode triboelectric nanogenerator (TENG) based on polydimethylsiloxane (PDMS) and silver (Ag) nanowires (NWs). Due to Ag NWs high specific surface area, the electrical conductivity of Ag NWs is better than the block of Ag, and PDMS is the transparent and flexible. The single electrode TENG not only can harvest energy from environment but also is a self-powered sensor for detecting acceleration from different angles. This TENG can attain an open-circuit voltage up to 330 V, a maximum short-circuit current of 15.5 μ A (2.6 μ A/cm


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2657
Author(s):  
Zhuyu Ding ◽  
Ming Zou ◽  
Peng Yao ◽  
Zhiyuan Zhu ◽  
Li Fan

Recently, the research of distributed sensor networks based on triboelectric technology has attracted extensive attention. Here, we reported a new triboelectric nanogenerator based on sodium chloride powder (S-TENG) to obtain mechanical energy. The polytetrafluoroethylene (PTFE) film and sodium chloride powder layer serve as the triboelectric pair. After testing and calculation, the internal resistance of S-TENG is 30 MΩ, and the output power of S-TENG (size: 6 cm × 6 cm) can arrive at the maximum value (about 403.3 µW). Furthermore, the S-TENG can achieve the open circuit voltage (Voc) of 198 V and short-circuit current (Isc) of 6.66 µA, respectively. Moreover, owing to the moisture absorption of sodium chloride powder, the S-TENG device also has the function of the humidity sensor. This work proposed a functional TENG device, and it can promote the advancement of self-powered sensors based on the TENG devices.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1689
Author(s):  
Xi Han ◽  
Dongjie Jiang ◽  
Xuecheng Qu ◽  
Yuan Bai ◽  
Yu Cao ◽  
...  

Electronic skin that is deformable, self-healable, and self-powered has high competitiveness for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile sensing. The elongation of SH-TENG can achieve 800% (uniaxial strain) and the SH-TENG can self-heal within 2.5 min. The SH-TENG is based on the single-electrode mode, which is constructed from ion hydrogels with an area of 2 cm × 3 cm, the output of short-circuit transferred charge (Qsc), open-circuit voltage (Voc), and short-circuit current (Isc) reaches ~6 nC, ~22 V, and ~400 nA, and the corresponding output power density is ~2.9 μW × cm−2 when the matching resistance was ~140 MΩ. As a biomechanical energy harvesting device, the SH-TENG also can drive red light-emitting diodes (LEDs) bulbs. Meanwhile, SH-TENG has shown good sensitivity to low-frequency human touch and can be used as an artificial electronic skin for touch/pressure sensing. This work provides a suitable candidate for the material selection of the hydrogel-based self-powered electronic skin.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1585 ◽  
Author(s):  
Smitha Ankanahalli Shankaregowda ◽  
Rumana Farheen Sagade Muktar Ahmed ◽  
Yu Liu ◽  
Chandrashekar Bananakere Nanjegowda ◽  
Xing Cheng ◽  
...  

Developing an eco-friendly, flexible and recyclable micro-structured dry electrode for sustainable life is essential. In this work, we have developed irregular, micro-structured sandpaper coated with graphite powder as an electrode for developing a simple, low-cost, contact-separation mode graphite-coated sandpaper-based triboelectric nanogenerator (GS-TENG) as a self-powered device and biomechanical sensor. The as-fabricated GS-TENG is a dielectric-conductor model. It is made up of a bottom layer with polytetrafluoroethylene (PTFE) as a triboelectric layer, which is attached onto a graphite-coated sandpaper-based electrode and a top layer with aluminum as another triboelectric layer as well as an electrode. The forward and reverse open-circuit voltages reach upto ~33.8 V and ~36.62 V respectively, and the forward and reverse short-circuit currents are ~2.16 µA and ~2.17µA, respectively. The output generated by GS-TENG can power 120 blue light-emitting diodes connected in series, liquid crystal display and can charge commercial capacitors along with the rectifier circuit. The capacitor of 22 µF is charged upto 5 V and is sufficient to drive digital watch as wearable electronics. Moreover, the device can track signals generated by human motion, hence it scavenges biomechanical energy. Thus, GS-TENG facilitates large-scale fabrication and has potential for future applications in wearable and portable devices.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 414 ◽  
Author(s):  
Nay Yee Win Zaw ◽  
Hyeonhee Roh ◽  
Inkyum Kim ◽  
Tae Sik Goh ◽  
Daewon Kim

Wind is a great sustainable energy source for harvesting due to its abundant characteristic. Typically, large space, loud noise, and heavy equipment are essential for a general wind power plant and it is solely operated by big-scale wind. However, wind energy can be efficiently harvested by utilizing the triboelectric nanogenerator due to its abundance, ubiquity, and environmentally friendliness. Furthermore, a few previously reported wind-driven triboelectric nanogenerators, which have the bulk fluttering layer by wind, still show difficulty in generating electricity under the conditions of weak wind because of the static friction arisen from the inherent structure. In this case, the output performance is deteriorated as well as the generator cannot operate completely. In this work, a wind-driven triboelectric nanogenerator (wind-TENG) based on the fluttering of the PTFE strips is proposed to solve the aforementioned problems. At the minimum operating wind pressure of 0.05 MPa, this wind-driven TENG delivers the open-circuit voltage of 3.5 V, short-circuit current of 300 nA, and the associated output power density of 0.64 mW/m2 at the external load resistance of 5 MΩ. Such conditions can be used to light up seven LEDs. Moreover, this wind-TENG has been utilized as a direction sensor which can sense the direction at which the wind is applied. This work thus provides the potential application of the wind-TENG as both self-driven electronics and a self-powered sensor system for detecting the direction under environmental wind.


Alloy Digest ◽  
1959 ◽  
Vol 8 (9) ◽  

Abstract Revere No. 508 is a highly ductile, malleable and corrosion resistant copper-nickel alloy suitable for condenser and heat exchanger tubes and many engineering applications such as salt water piping aboard ship, many components of salt water and fresh water stills, feed water heater tubes and marine coolers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-81. Producer or source: Revere Copper and Brass Inc..


Alloy Digest ◽  
1991 ◽  
Vol 40 (8) ◽  

Abstract Copper Alloy No. C72600 is a wrought copper-nickel alloy. It has excellent capacity for cold work and may be readily joined by soldering, brazing, arc and resistance welding. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fatigue. It also includes information on forming, heat treating, and joining. Filing Code: Cu-563. Producer or source: Copper and copper alloy mills.


Alloy Digest ◽  
1978 ◽  
Vol 27 (2) ◽  

Abstract DRIVER 180 ALLOY is a copper-nickel alloy for use where moderate electrical resistance is required. The number designation refers to its specific resistivity (180 ohms/cir mil/ft) which is combined with a fairly low coefficient of resistance (180 x 10^-6 per C). Its maximum recommended operating temperature is 1000 F. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-348. Producer or source: Wilbur B. Driver Company.


Sign in / Sign up

Export Citation Format

Share Document