scholarly journals Dry-Coated Graphite onto Sandpaper for Triboelectric Nanogenerator as an Active Power Source for Portable Electronics

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1585 ◽  
Author(s):  
Smitha Ankanahalli Shankaregowda ◽  
Rumana Farheen Sagade Muktar Ahmed ◽  
Yu Liu ◽  
Chandrashekar Bananakere Nanjegowda ◽  
Xing Cheng ◽  
...  

Developing an eco-friendly, flexible and recyclable micro-structured dry electrode for sustainable life is essential. In this work, we have developed irregular, micro-structured sandpaper coated with graphite powder as an electrode for developing a simple, low-cost, contact-separation mode graphite-coated sandpaper-based triboelectric nanogenerator (GS-TENG) as a self-powered device and biomechanical sensor. The as-fabricated GS-TENG is a dielectric-conductor model. It is made up of a bottom layer with polytetrafluoroethylene (PTFE) as a triboelectric layer, which is attached onto a graphite-coated sandpaper-based electrode and a top layer with aluminum as another triboelectric layer as well as an electrode. The forward and reverse open-circuit voltages reach upto ~33.8 V and ~36.62 V respectively, and the forward and reverse short-circuit currents are ~2.16 µA and ~2.17µA, respectively. The output generated by GS-TENG can power 120 blue light-emitting diodes connected in series, liquid crystal display and can charge commercial capacitors along with the rectifier circuit. The capacitor of 22 µF is charged upto 5 V and is sufficient to drive digital watch as wearable electronics. Moreover, the device can track signals generated by human motion, hence it scavenges biomechanical energy. Thus, GS-TENG facilitates large-scale fabrication and has potential for future applications in wearable and portable devices.

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 700 ◽  
Author(s):  
Kequan Xia ◽  
Zhiwei Xu ◽  
Zhiyuan Zhu ◽  
Hongze Zhang ◽  
Yong Nie

Recent years, triboelectric nanogenerators (TENGs) have attracted increased attention from researchers worldwide. Owing to their conductivity and triboelectric characteristics, metal materials can be made as both triboelectric materials and conductive electrodes. However, the surface of typical metals (such as copper, aluminum, and iron) is likely to be corroded when the sweat generated by human-body movement drops on the surface of TENGs, as this corrosion is detrimental to the output performance of TENGs. In this work, we proposed a novel corrosion-resistant copper–nickel based TENG (CN-TENG). Copper–nickel alloy conductive tape and polytetrafluoroethylene (PTFE) tape played the role of the triboelectric materials, and polymethyl methacrylate (PMMA) was utilized as the supporting part. The conductive copper–nickel alloy tape also served as a conductive electrode. The open-circuit voltage (VOC) and short-circuit current (ISC) can arrive at 196.8 V and 6 μA, respectively. Furthermore, peak power density values of 45 μW/cm2 were realized for the CN-TENG. A series of experiments confirmed its corrosion-resistant property. The approximate value of VOC for the fabricated TENG integrated into the shoe reached 1500 V, which is capable of driving at least 172 high-power LEDs in series. The results of this research provide a workable method for supporting corrosion-resistant self-powered wearable electronics.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lingjie Xie ◽  
Xiaoping Chen ◽  
Zhen Wen ◽  
Yanqin Yang ◽  
Jihong Shi ◽  
...  

Abstract Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers. In this work, we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator (FST–TENG) based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer. Owing to the great robustness and continuous conductivity, the FST–TENGs demonstrate high stability, stretchability, and even tailorability. For a single device with ~ 6 cm in length and ~ 3 mm in diameter, the open-circuit voltage of ~ 59.7 V, transferred charge of ~ 23.7 nC, short-circuit current of ~ 2.67 μA and average power of ~ 2.13 μW can be obtained at 2.5 Hz. By knitting several FST–TENGs to be a fabric or a bracelet, it enables to harvest human motion energy and then to drive a wearable electronic device. Finally, it can also be woven on dorsum of glove to monitor the movements of gesture, which can recognize every single finger, different bending angle, and numbers of bent finger by analyzing voltage signals.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 656 ◽  
Author(s):  
Zhumei Tian ◽  
Guicheng Shao ◽  
Qiong Zhang ◽  
Yanan Geng ◽  
Xi Chen

Triboelectric nanogenerators with the function of harvesting human motion energy have attracted wide attention. Here, we demonstrate a shared-electrode and nested-tube structure triboelectric nanogenerator (SNTN) for harvesting human motion energy. The design of the SNTN employs flexible silicone rubber as the negative friction material and Ni-coated polyester conductive textile as the positive friction material and the electrode material. The entire structure consists of an inner triboelectric unit and an outer triboelectric unit. The inner triboelectric unit is formed by a hollow inner tube and a hollow middle tube, while the hollow middle tube and a hollow outer tube constitute the outer triboelectric unit. The hollow middle tube is used as the shared tube, and the electrode in the middle tube is used as the shared electrode of the two triboelectric units. Our research demonstrates that the output performance of the SNTN was improved significantly compared with a single triboelectric unit due to the cooperation of the two triboelectric units. When the SNTN is pressed by 300 N external force, output open-circuit voltage of 180 V and output short-circuit current of 8.5 μA can be obtained. The output electrical energy can light up 31 light-emitting diodes (LEDs) connected serially (displaying “XZTC”) and can drive a digital clock after rectifying storage, which shows application prospects in the field of illuminating devices and portable electronics.


Author(s):  
Yi Zhang ◽  
Ka Chung Chan ◽  
Sau Chung Fu ◽  
Christopher Yu Hang Chao

Abstract Flutter-driven triboelectric nanogenerator (FTENG) is one of the most promising methods to harvest small-scale wind energy. Wind causes self-fluttering motion of a flag in the FTENG to generate electricity by contact electrification. A lot of studies have been conducted to enhance the energy output by increasing the surface charge density of the flag, but only a few researches tried to increase the converting efficiency by enlarging the flapping motion. In this study, we show that by simply replacing the rigid flagpole in the FTENG with a flexible flagpole, the energy conversion efficiency is augmented and the energy output is enhanced. It is found that when the flag flutters, the flagpole also undergoes aerodynamic force. The lift force generated from the fluttering flag applies a periodic rotational moment on the flagpole, and causes the flagpole to vibrate. The vibration of the flagpole, in turn amplifies the flutter of the flag. Both the fluttering dynamics of the flags with rigid and flexible flagpoles have been recorded by a high-speed camera. When the flag was held by a flexible flagpole, the fluttering amplitude and the contact area between the flag and electrode plates were increased. The energy enhancement increased as the flow velocity increased and the enhancement can be 113 times when the wind velocity is 10 m/s. The thickness of the flagpole was investigated. An optimal output of open-circuit voltage reaching 1128 V (peak-to-peak value) or 312.40 V (RMS value), and short-circuit current reaching 127.67 μA (peak-to-peak value) or 31.99 μA (RMS value) at 12.21 m/s flow velocity was achieved. This research presents a simple design to enhance the output performance of an FTENG by amplifying the fluttering amplitude. Based on the performance obtained in this study, the improved FTENG has the potential to apply in a smart city for driving electronic devices as a power source for IoT applications.


2013 ◽  
Vol 06 (01) ◽  
pp. 1350005 ◽  
Author(s):  
BINGWEI LUO ◽  
YUAN DENG ◽  
YAO WANG ◽  
YONGMING SHI ◽  
LILI CAO ◽  
...  

Large-scale CdS nanorod arrays have been prepared directly by a simple one-step and non-template magnetron sputtering method on different substrates. Parallel and uniform CdS nanorods with diameters ∼ 70 nm were self-assembled with (00l) orientation regardless of the substrate. The CdS nanorod arrays showed high open-circuit photovoltage, short-circuit photocurrent intensity and excellent photosensitivity properties with a switching "ON/OFF" ratio as high as 60. This study provides a simple strategy to grow CdS nanorod arrays without the constraints introduced by the substrate and opens a new potential for the application of CdS nanorod arrays in photodetectors and nanostructured solar energy conversion devices.


2016 ◽  
Vol 31 (4) ◽  
pp. 356-360 ◽  
Author(s):  
Tom Adams ◽  
Shripad Revankar ◽  
Peter Cabauy ◽  
Bret Elkind ◽  
Darrell Cheu

Longevity of sensors and portable devices is severely limited by temperature, chemical instability, and electrolyte leakage issues associated with conventional electrochemical batteries. Betavoltaics, which operate similar to photo voltaics, can operate in a wide temperature range safely without permanent degradation. Though not a new concept, which began in the 1950's and peaked in the mid 1970's, research has been minimal and sporadic until recent advancements in ultra-low power electronics and materialization of low power applications. The technology is rapidly maturing, generating research, and development in increasing the beta emitting source and semiconductor efficiencies. This study presents an update on betavoltaic technology, results from temperature evaluation on commercially available General Licensed betavoltaic cells, development of a hybrid system for latent and burst power, modeling and simulation techniques and results, and current and proposed research and development. Betavoltaic performance was successfully demonstrated for a wide temperature range (-30?C to 70?C). Short circuit current and open circuit voltage were used to compare electrical performance. Results indicate that the open-circuit voltage and maximum power decreased as temperature increased due to increases in the semiconductor's intrinsic carrier concentration.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4996
Author(s):  
Yupeng Mao ◽  
Yongsheng Zhu ◽  
Tianming Zhao ◽  
Changjun Jia ◽  
Xiao Wang ◽  
...  

A self-powered portable triboelectric nanogenerator (TENG) is used to collect biomechanical energy and monitor the human motion, which is the new development trend in portable devices. We have developed a self-powered portable triboelectric nanogenerator, which is used in human motion energy collection and monitoring mobile gait and stability capability. The materials involved are common PTFE and aluminum foil, acting as a frictional layer, which can output electrical signals based on the triboelectric effect. Moreover, 3D printing technology is used to build the optimized structure of the nanogenerator, which has significantly improved its performance. TENG is conveniently integrated with commercial sport shoes, monitoring the gait and stability of multiple human motions, being strategically placed at the immediate point of motion during the respective process. The presented equipment uses a low-frequency stabilized voltage output system to provide power for the wearable miniature electronic device, while stabilizing the voltage output, in order to effectively prevent voltage overload. The interdisciplinary research has provided more application prospects for nanogenerators regarding self-powered module device integration.


2020 ◽  
Vol 860 ◽  
pp. 28-33
Author(s):  
Rany Khaeroni ◽  
Herman ◽  
Priastuti Wulandari

In recent years, perovskite material has been extensively studied due to its unique physical properties and promising application in the third generation of solar cells. In particular, Sn-based perovskite has been considered to replace Pb-based perovskite because of the toxic effects and it can lead to other serious problems related to the environment. Cs2SnI6 perovskite has been known to be synthesized in a simple chemical process and it can be produced on a large scale. Moreover, this material is also oxygen and moisture stable due to the high oxidation state of tin. In this study, we synthesize air-stable Cs2SnI6 perovskite by the use of the wet chemical process at room temperature. Next, we attempt to fabricate the inverted bulk heterojunction solar cells incorporated Cs2SnI6 as electron transport layer in the configuration of ITO/ZnO/Cs2SnI6/P3HT:PCBM/PEDOT:PSS/Ag to improve device performance. The Cs2SnI6 perovskite shows an Fm-3m space group with a cubic lattice parameter of 11.62Å confirmed by X-Ray Diffraction (XRD) measurement, while UV-Vis measurement indicates this type of perovskite has direct band gap ~3.1 eV. The fabricated solar cell device reveals the enhancement in current density at short circuit condition (Jsc) from 64.69 mA/cm2 to 77.02 mA/cm2 with the addition of 2.25 mg/ml Cs2SnI6 along with the enhancement of power conversion efficiency (PCE) from 7.05% to 9.75% as characterized by J-V measurement. In our case, the voltage at open circuit condition (Voc) of the device does not perform significant improvement. Besides, it is found that the solar cell devices are quite stable even after exposure in the air for six weeks after fabrication, as indicated by PCE performance.


2003 ◽  
Vol 763 ◽  
Author(s):  
S. Nishiwaki ◽  
S. Siebentritt ◽  
M. Ch. Lux-Steiner

AbstractCu-Ga-Se films with an orderd vacancy compound (OVC) structure were prepared at substrate temperature about 500 °C by thermal co-deposition. With a preparation under extremely Se excess condition, films of the OVC were synthesized within the compositional ratio of 0.73 ≤ [Ga]/([Cu]+[Ga]) ≤ 0.86 along Cu2Se-Ga2Se3 pseudo binary system. The growth on soda-lime glass substrates improves the crystallinity compared to that on alkali-free glass. An increase in the optical bandgaps of OVC films from 1.85 eV to 1.94 eV was observed with an increase in the Ga content of the films. The deposition of Cu and Se onto Ga2Se3 films resulted in a vertically inhomogeneous film: the bottom layer with the OVC structure and the top layer with the chalcopyrite structure. A solar cell using the CuGa5.0Se8.1 film within a ZnO/CdS/CuGa-Se/Mo/soda-lime glass substrate structure showed an open circuit voltage of 947 mV, an efficiency of 2.2 %, a short circuit current density of 4.5 mA/cm2, and a fill factor of 0.52 (Air Mass 1.5, 0.5 cm2, total area).


2017 ◽  
Vol 10 (2) ◽  
pp. 265-270
Author(s):  
Elham Moradi ◽  
Ali-Reza Moznebi ◽  
Kambiz Afrooz ◽  
Masoud Movahhedi

In this paper, a four-way dual-band Gysel power divider (GPD)/combiner based on a back-to-back microstrip structure method is proposed and investigated. A two-layer substrate is adopted to implement this PD. In order to divide the input signal into four equivalent signals, the input and four output ports of the proposed PD are placed on the top and the four external isolation resistors are placed on the bottom layer of the substrate. Furthermore, the dual-band response is achieved by adding a short-circuit stub and an open-circuit stub to the structure. Then, the theoretical closed-form design formulas are derived based on the considered conditions and circuit transmission line theory. Finally, for verification purpose, a prototype PD is designed, fabricated, and measured which works at dual frequencies of 1 and 2 GHz simultaneously. The good agreement between simulation and measurement results, which show good impedance matching, isolation, as well as power transmission, verifies the correctness of the design theory.


Sign in / Sign up

Export Citation Format

Share Document