scholarly journals -1-5753907Highly Sensitive Plasmonic Sensor Based on a Dual-Side Polished Photonic Crystal Fiber for Component Content Sensing Applications

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1587 ◽  
Author(s):  
Chen ◽  
Chang ◽  
Zhang ◽  
Zhou ◽  
Lu ◽  
...  

:A plasmonic sensor based on a dual-side polished photonic crystal fiber operating in a telecommunication wavelength range is proposed and investigated numerically by the finite element method (FEM). We study the effects of structural parameters on the sensor’s performance and analyze their tuning effects on loss spectra. As a result, two configurations are found when the analyte refractive index (RI) changes from 1.395 to 1.415. For configuration 1, an RI resolution of 9.39 × 10−6, an average wavelength sensitivity of 10,650 nm/RIU (the maximum wavelength sensitivity is 12,400 nm/RIU), an amplitude sensitivity of 252 RIU−1 and a linearity of 0.99692 are achieved. For configuration 2, the RI resolution, average wavelength sensitivity, amplitude sensitivity and linearity are 1.19 × 10−5, 8400 nm/RIU, 85 RIU−1 and 0.98246, respectively. The combination of both configurations can broaden the wavelength range for the sensing detection. Additionally, the sensor has a superior figure of merit (FOM) to a single-side polished design. The proposed sensor has a maximum wavelength sensitivity, amplitude sensitivity and RI resolution of the same order magnitude as that of existing sensors as well as higher linearity, which allows it to fulfill the requirements for modern sensing of being densely compact, amenable to integration, affordable and capable of remote sensing.

2021 ◽  
Author(s):  
Bahar Meshginqalam ◽  
Jamal Barvestani

Abstract A highly sensitive D-shaped photonic crystal fiber sensor with circular lattice is proposed for external plasmonic sensing. The proposed design of plasmonic material in a D-shaped form effectively facilitates the excitation of surface plasmons and enhances the sensor performance. As a comparative study, two different plasmonic materials, gold and silver, are applied D-shapely on the fiber and the proposed sensor performance is numerically investigated and evaluated. Moreover, the optimized structural parameters such as air-hole diameters and the thickness of silver and gold layers are selected via simulation results which cause the highest sensitivity of 40000nm/RIU for the gold coated fiber using the wavelength interrogation method. Furthermore, the maximum figure of merit can reach 621.50RIU-1. Analytes with the refractive indices ranging from 1.34 to 1.39 can be detected by double-loss peak that is a more reliable method of simultaneous detection and verification of sensing characteristics. Due to its promising results, the proposed sensor can be widely useful in the area of chemical and biological sensing.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5150 ◽  
Author(s):  
Nan Chen ◽  
Min Chang ◽  
Xinglian Lu ◽  
Jun Zhou ◽  
Xuedian Zhang

A hexagonal photonic crystal fiber (PCF) sensor with a dual optofluidic channel based on surface plasmon resonance (SPR) effect is proposed. The sensor characteristic is numerically explored by software integrated with the finite element method (FEM). The numerical results show that, when the analyte refractive index (RI) varies from 1.32 to 1.38, high linearity between resonance wavelength and analyte RI is obtained and the value of adjusted R2 is up to 0.9993. Simultaneously, the proposed sensor has maximum wavelength sensitivity (WS) of 5500 nm/RIU and maximum amplitude sensitivity (AS) of 150 RIU−1, with an RI resolution of 1.82 × 10−5 RIU. Besides, owing to a simple structure and good tolerance of the proposed sensor, it can be easily fabricated by means of existing technology. The proposed sensor suggests promising applications in oil detection, temperature measurement, water quality monitoring, bio-sensing, and food safety.


2021 ◽  
Author(s):  
vijayalakshmi Dhinakaran ◽  
C.T. Manimegalai ◽  
Natesan Ayyanar ◽  
Truong Khang Nguyen ◽  
K. Kalimuthu

Abstract Platinum Diselenide, PtSe2 is becoming highly trending owing to its fascinating optoelectronic, thermoelectric and semiconductor properties. They are non-toxic, chemically inert and allow high biomolecule absorption which makes them highly applicable in sensors to boost the sensing performance. Here, we propose Surface Plasmon Resonance (SPR) based Photonic Crystal Fiber (PCF) sensor for enhanced refractive index sensing at mid infrared wavelengths. In order to achieve this, tri-path PCF coated with hybrid layer of gold/PtSe2 which allows light to travel freely through the cladding and interact with the plasmonic material to create strong coupling effect. Finite Element Method is used for numerical examination and investigation of the sensing performance for the designed tri-path sensor. The optimized proposed sensor exhibits maximum wavelength sensitivity of 42,000 nm/RIU and maximum wavelength resolution of 2.4 x 10-6 within the analyte range from 1.33 to 1.38, which almost covers the unknown analytes of chemical, bio and gas. Further, we achieve very low loss and unique design to accomplish high sensitivity which makes it applicable to be a future candidate in various sensing applications.


2021 ◽  
pp. 2150306
Author(s):  
Pibin Bing ◽  
Guifang Wu ◽  
Zhongyang Li ◽  
Sheng Yuan ◽  
Hongtao Zhang ◽  
...  

The photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR) technology has flexibility in birefringence, negative dispersion, effective area and nonlinearity and has become a widely studied new fiber. However, there are many problems in the practical application of the sensor, such as complex structure design, not easy to prepare, the low sensitivity of sensing detection, narrow range of refractive index detection of analytes, which greatly limits the application range and functions of PCF sensors. To solve the above problems, this paper adopts a structure with a longer vertical distance between the D-shaped large air hole channel and the core. The energy of the core conduction mode is better limited by the cladding to transmit in the core, and the plasma mode is enhanced, which can effectively increase the wavelength sensitivity. In this paper, the hexagonal double-clad air hole structure and the D-type structure are combined to ensure a simple structure and facilitate manufacturing and production, while the wavelength sensitivity is also greatly improved. The wavelength sensitivity of the dual sample channel can reach up to 16200 nm/RIU and 15800 nm/RIU, which has broad application prospects in the field of high-sensitivity detection.


2010 ◽  
Vol 57 (6(1)) ◽  
pp. 1747-1750 ◽  
Author(s):  
Young-Geun Han ◽  
Min-Seok Yoon ◽  
Oh-Jang Kwon ◽  
Hyun-Joo Kim ◽  
Su-Ho Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document