scholarly journals MicroRNA Shuttle from Cell-To-Cell by Exosomes and Its Impact in Cancer

2019 ◽  
Vol 5 (1) ◽  
pp. 28 ◽  
Author(s):  
Heidi Schwarzenbach ◽  
Peter Gahan

The identification of exosomes, their link to multivesicular bodies and their potential role as a messenger vehicle between cancer and healthy cells opens up a new approach to the study of intercellular signaling. Furthermore, the fact that their main cargo is likely to be microRNAs (miRNAs) provides the possibility of the transfer of such molecules to control activities in the recipient cells. This review concerns a brief overview of the biogenesis of both exosomes and miRNAs together with the movement of such structures between cells. The possible roles of miRNAs in the development and progression of breast, ovarian and prostate cancers are discussed.

2012 ◽  
Vol 3 (2) ◽  
pp. 1287-1320
Author(s):  
E. Simoncini ◽  
N. Virgo ◽  
A. Kleidon

Abstract. It has long been observed that Earth's atmosphere is uniquely far from its thermochemical equilibrium state in terms of its chemical composition. Studying this state of disequilibrium is important both for understanding the role that life plays in the Earth system, and for its potential role in the detection of life on exoplanets. Here we present a methodology for assessing the strength of the biogeochemical cycling processes that drive disequilibrium in planetary systems. We apply it to the simultaneous presence of CH4 and O2 in Earth's atmosphere, which has long been suggested as a sign of life that could be detected from far away. Using a simplified model, we identify that the most important property to quantify is not the distance from equilibrium, but the power required to drive it. A weak driving force can maintain a high degree of disequilibrium if the residence times of the compounds involved are long; but if the disequilibrium is high and the kinetics fast, we can conclude that the disequilibrium must be driven by a substantial source of energy. Applying this to Earth's atmosphere, we show that the biotically-generated portion of the power required to maintain the methane-oxygen disequilibrium is around 0.67 TW, although the uncertainty in this figure is about 50% due to uncertainty in the global CH4 production. Compared to the chemical energy generated by the biota by photosynthesis, 0.67 TW represents only a very small fraction and, perhaps surprisingly, is of a comparable magnitude to abiotically-driven geochemical processes at the Earth's surface. We discuss the implications of this new approach, both in terms of enhancing our understanding of the Earth system, and in terms of its impact on the possible detection of distant photosynthetic biospheres.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Guang-Hui Qi ◽  
Chun-Hui Wang ◽  
Hong-Ge Zhang ◽  
Jian-Guo Yu ◽  
Fei Ding ◽  
...  

Abstract There is still no conclusion on the potential effect of the rs2295080 and rs2536 polymorphisms of mTOR (mammalian target of rapamycin) gene on different cancers. Herein, we performed a comprehensive assessment using pooled analysis, FPRP (false-positive report probability), TSA (trial sequential analysis), and eQTL (expression quantitative trait loci) analysis. Eighteen high-quality articles from China were enrolled. The pooled analysis of rs2295080 with 9502 cases and 10,965 controls showed a decreased risk of urinary system tumors and specific prostate cancers [TG vs. TT, TG+GG vs. TT and G vs. T; P<0.05, OR (odds ratio) <1]. FPRP and TSA data further confirmed these results. There was an increased risk of leukemia [G vs. T, GG vs. TT, and GG vs. TT+TG genotypes; P<0.05, OR>1]. The eQTL data showed a potential correlation between the rs2295080 and mTOR expression in whole blood samples. Nevertheless, FPRP and TSA data suggested that more evidence is required to confirm the potential role of rs2295080 in leukemia risk. The pooled analysis of rs2536 (6653 cases and 7025 controls) showed a significant association in the subgroup of “population-based” control source via the allele, heterozygote, dominant, and carrier comparisons (P<0.05, OR>1). In conclusion, the TG genotype of mTOR rs2295080 may be linked to reduced susceptibility to urinary system tumors or specific prostate cancers in Chinese patients. The currently data do not strongly support a role of rs2295080 in leukemia susceptibility. Large sample sizes are needed to confirm the potential role of rs2536 in more types of cancer.


2002 ◽  
Vol 217 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Gwen M Sturgill ◽  
Soofia Siddiqui ◽  
Xuedong Ding ◽  
Nicole D Pecora ◽  
Philip N Rather

PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0224414
Author(s):  
Gabriella Baio ◽  
Marina Fabbi ◽  
Michele Cilli ◽  
Francesca Rosa ◽  
Simona Boccardo ◽  
...  

1999 ◽  
Vol 10 (4) ◽  
pp. 847-859 ◽  
Author(s):  
Arisa Sunio ◽  
Anne B. Metcalf ◽  
Helmut Krämer

Mutations in the hook gene alter intracellular trafficking of internalized ligands in Drosophila. To dissect this defect in more detail, we developed a new approach to visualize the pathway taken by the Bride of Sevenless (Boss) ligand after its internalization into R7 cells. A chimeric protein consisting of HRP fused to Boss (HRP-Boss) was expressed in R8 cells. This chimera was fully functional: it rescued the boss mutant phenotype, and its trafficking was indistinguishable from that of the wild-type Boss protein. The HRP activity of the chimera was used to follow HRP-Boss trafficking on the ultrastructural level through early and late endosomes in R7 cells. In both wild-type andhook mutant eye disks, HRP-Boss was internalized into R7 cells. In wild-type tissue, Boss accumulated in mature multivesicular bodies (MVBs) within R7 cells; such accumulation was not observed in hook eye disks, however. Quantitative electron microscopy revealed a loss of mature MVBs inhook mutant tissue compared with wild type, whereas more than twice as many multilammelar late endosomes were detected. Our genetic analysis indicates that Hook is required late in endocytic trafficking to negatively regulate delivery from mature MVBs to multilammelar late endosomes and lysosomes.


Hypersonic flows are distinguished by a capacity to provoke endothermic chemical reactions in their constituent molecules. Interactions of gas-flow and chemical activity also take place in combustible (exothermic) gas mixtures, such as may be found in propulsive devices. After a brief validation of the idea that chemically active flows can be adequately treated via Euler-Prandtl theory, the paper is devoted to a discussion of some particular features of chemically active very-high-speed Euler- inviscid flows. The treatment, which is fairly self-contained, brings out some of the similarities that exist between dissociative and combustible flows by emphasizing the central part played by shock-waves across which no chemical reaction takes place; in this way the treatment is novel and helps to point out the closer-than-usual links that exist between external and propulsive flows in the hypersonic environment. A new approach to the numerical computation of supersonic two-dimensional steady reacting flow fields is outlined, as is the potential role of large activation energy asymptotics in simple dissociating flows. Some new results and suggestions for the study of high-speed combustion bring the paper to a close.


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


Sign in / Sign up

Export Citation Format

Share Document