scholarly journals Co-Regulation of Protein Coding Genes by Transcription Factor and Long Non-Coding RNA in SARS-CoV-2 Infected Cells: An In Silico Analysis

2021 ◽  
Vol 7 (4) ◽  
pp. 74
Author(s):  
Chinmay Saha ◽  
Sayantan Laha ◽  
Raghunath Chatterjee ◽  
Nitai P. Bhattacharyya

Altered expression of protein coding gene (PCG) and long non-coding RNA (lncRNA) have been identified in SARS-CoV-2 infected cells and tissues from COVID-19 patients. The functional role and mechanism (s) of transcriptional regulation of deregulated genes in COVID-19 remain largely unknown. In the present communication, reanalyzing publicly available gene expression data, we observed that 66 lncRNA and 5491 PCG were deregulated in more than one experimental condition. Combining our earlier published results and using different publicly available resources, it was observed that 72 deregulated lncRNA interacted with 3228 genes/proteins. Many targets of deregulated lncRNA could also interact with SARS-CoV-2 coded proteins, modulated by IFN treatment and identified in CRISPR screening to modulate SARS-CoV-2 infection. The majority of the deregulated lncRNA and PCG were targets of at least one of the transcription factors (TFs), interferon responsive factors (IRFs), signal transducer, and activator of transcription (STATs), NFκB, MYC, and RELA/p65. Deregulated 1069 PCG was joint targets of lncRNA and TF. These joint targets are significantly enriched with pathways relevant for SARS-CoV-2 infection indicating that joint regulation of PCG could be one of the mechanisms for deregulation. Over all this manuscript showed possible involvement of lncRNA and mechanisms of deregulation of PCG in the pathogenesis of COVID-19.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Lu ◽  
Xinglei Qin ◽  
Yajun Zhou ◽  
Gang Li ◽  
Zhaoyang Liu ◽  
...  

AbstractGemcitabine is the first-line chemotherapy drug for cholangiocarcinoma (CCA), but acquired resistance has been frequently observed in CCA patients. To search for potential long noncoding RNAs (lncRNAs) involved in gemcitabine resistance, two gemcitabine resistant CCA cell lines were established and dysregulated lncRNAs were identified by lncRNA microarray. Long intergenic non-protein coding RNA 665 (LINC00665) were found to rank the top 10 upregulated lncRNAs in our study, and high LINC00665 expression was closely associated with poor prognosis and chemoresistance of CCA patients. Silencing LINC00665 in gemcitabine resistant CCA cells impaired gemcitabine tolerance, while enforced LINC00665 expression increased gemcitabine resistance of sensitive CCA cells. The gemcitabine resistant CCA cells showed increased EMT and stemness properties, and silencing LINC00665 suppressed sphere formation, migration, invasion and expression of EMT and stemness markers. In addition, Wnt/β-Catenin signaling was activated in gemcitabine resistant CCA cells, but LINC00665 knockdown suppressed Wnt/β-Catenin activation. B-cell CLL/lymphoma 9-like (BCL9L), the nucleus transcriptional regulators of Wnt/β-Catenin signaling, plays a key role in the nucleus translocation of β-Catenin and promotes β-Catenin-dependent transcription. In our study, we found that LINC00665 regulated BCL9L expression by acting as a molecular sponge for miR-424-5p. Moreover, silencing BCL9L or miR-424-5p overexpression suppressed gemcitabine resistance, EMT, stemness and Wnt/β-Catenin activation in resistant CCA cells. In conclusion, our results disclosed the important role of LINC00665 in gemcitabine resistance of CCA cells, and provided a new biomarker or therapeutic target for CCA treament.


2021 ◽  
Vol 11 (8) ◽  
pp. 1306-1312
Author(s):  
Li Song ◽  
Ningchao Du ◽  
Haitao Luo ◽  
Furong Li

This study aimed to identify the association of protein coding and long non coding RNA genes with immunotherapy response in melanoma. Based on RNA sequencing data of melanoma specimens, the expression levels of protein coding and long non coding RNA genes were calculated using the Kallisto RNA-seq quantification method, and differently expressed genes were detected using the DESeq2 method. Cox proportional hazards regression was used to evaluate the effects of gene expression on survival. According to the clinical data of 14 patients with drug response and 11 patients without drug response, 18 protein coding genes and 14 long non coding RNAs showed differential expressions (multiple of difference > 2 and P < 0.01 after correction), among which the coding genes of differential expression were significantly enriched through the process of cell adhesion (P < 0.01). The results of survival analysis showed that 18 coding genes and 14 long non coding RNA genes had significant effects on patient survival (P < 0.01). In this study, magnetic nanoparticles can be used to extract genomic DNA and total RNA due to their paramagnetism and biocompatibility, then transcriptome high-throughput sequencing was performed. The method has the advantages of removing dangerous reagents such as phenol and chloroform, replacing inorganic coating such as silica with organic oil, and shortening reaction time. Protein coding and long non coding RNA genes as well as magnetic nanoparticles may serve as potential cancer immune biomarker targets for developing future oncological treatments.


2018 ◽  
Author(s):  
Xiao‑Jin Yang ◽  
Jing‑Jing Zhao ◽  
Wei‑Jun Chen ◽  
Gen‑Gen Zhang ◽  
Wei Wang ◽  
...  

Oncotarget ◽  
2018 ◽  
Vol 9 (14) ◽  
pp. 11794-11804 ◽  
Author(s):  
Li Yin ◽  
Xueqiang Guo ◽  
Chunyan Zhang ◽  
Zhihui Cai ◽  
Cunshuan Xu

2018 ◽  
Vol 47 (3) ◽  
pp. 893-913 ◽  
Author(s):  
Qing Tang ◽  
Swei Sunny Hann

Long non-coding RNAs (LncRNAs) represent a novel class of noncoding RNAs that are longer than 200 nucleotides without protein-coding potential and function as novel master regulators in various human diseases, including cancer. Accumulating evidence shows that lncRNAs are dysregulated and implicated in various aspects of cellular homeostasis, such as proliferation, apoptosis, mobility, invasion, metastasis, chromatin remodeling, gene transcription, and post-transcriptional processing. However, the mechanisms by which lncRNAs regulate various biological functions in human diseases have yet to be determined. HOX antisense intergenic RNA (HOTAIR) is a recently discovered lncRNA and plays a critical role in various areas of cancer, such as proliferation, survival, migration, drug resistance, and genomic stability. In this review, we briefly introduce the concept, identification, and biological functions of HOTAIR. We then describe the involvement of HOTAIR that has been associated with tumorigenesis, growth, invasion, cancer stem cell differentiation, metastasis, and drug resistance in cancer. We also discuss emerging insights into the role of HOTAIR as potential biomarkers and therapeutic targets for novel treatment paradigms in cancer.


2017 ◽  
Author(s):  
Sudipto K. Chakrabortty ◽  
Lisa Bedford ◽  
Hidefumi Uchiyama ◽  
Vasisht Tadigotla ◽  
Michael D. Valentino ◽  
...  

2020 ◽  
Vol 127 ◽  
pp. 124-135
Author(s):  
George D. Vavougios ◽  
Christiane Nday ◽  
Sygliti-Henrietta Pelidou ◽  
Sotirios G. Zarogiannis ◽  
Konstantinos I. Gourgoulianis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document