scholarly journals Effect of Mixed Meal and Leucine Intake on Plasma Amino Acid Concentrations in Young Men

Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1543 ◽  
Author(s):  
Naomi Yoshii ◽  
Koji Sato ◽  
Riki Ogasawara ◽  
Yusuke Nishimura ◽  
Yasushi Shinohara ◽  
...  

Dietary protein intake is critical for the maintenance of skeletal muscle mass. Plasma amino acid concentrations increase with protein intake and increases in muscle protein synthesis are dependent on leucine concentrations. We aimed to investigate the effect of a mixed meal and free amino acids intake on plasma leucine concentrations. In this randomized crossover study, 10 healthy young men (age 25 ± 1 years, height 1.73 ± 0.02 m, weight 65.8 ± 1.5 kg) underwent tests under different conditions—intake of 2 g of leucine (LEU), intake of a mixed meal (protein 27.5 g, including 2.15 g of leucine, protein: fat: carbohydrate ratio—22:25:53) only (MEAL), intake of 2 g of leucine immediately after a mixed meal (MEAL-LEU) and intake of 2 g of leucine 180 min after a mixed meal (MEAL-LEU180). Blood samples were collected within 420 min (240 min for LEU only) after intake and changes in amino acid concentrations were evaluated. Although the maximum plasma leucine concentration increased to 442 ± 24 µM for LEU, it was lower at 347 ± 16 µM (p < 0.05 vs. LEU) for MEAL-LEU, 205 ± 8 µM (p < 0.05 vs. LEU) for MEAL. The maximum plasma leucine concentration for MEAL-LEU180 increased to 481 ± 27 µM and compared to LEU there was no significant difference (p > 0.1). The observation that rapid elevations in plasma leucine concentrations are suppressed when leucine is ingested at the same time as a meal suggests that the timing of its intake must be considered to maximize the anabolic response.

1990 ◽  
Vol 258 (1) ◽  
pp. E117-E125 ◽  
Author(s):  
P. Castellino ◽  
L. Luzi ◽  
S. Del Prato ◽  
R. A. DeFronzo

The separate and combined effects of insulin and epinephrine on leucine metabolism were examined in healthy young volunteers. Subjects participated in four experimental protocols: 1) euglycemic insulin clamp (+80 microU/ml), 2) epinephrine infusion (50 ng.kg-1.min-1) plus somatostatin with basal replacement of insulin and glucagon, 3) combined epinephrine (50 ng.kg-1.min-1) plus insulin (+80 microU/ml) infusion, and 4) epinephrine and somatostatin as in study 2 plus basal amino acid replacement. Studies were performed with a prime-continuous infusion of [1-14C]leucine and indirect calorimetry. Our results indicate that 1) hyperinsulinemia causes a generalized decrease in plasma amino acid concentrations, including leucine; 2) the reduction in plasma leucine concentration is primarily due to an inhibition of endogenous leucine flux; nonoxidative leucine disposal decreases after insulin infusion; 3) epinephrine, without change in plasma insulin concentration, reduces plasma amino acid levels; 4) combined epinephrine-insulin infusion causes a greater decrease in plasma amino levels than observed with either hormone alone; this is because of a greater inhibition of endogenous leucine flux; and 5) when basal amino acid concentrations are maintained constant with a balanced amino acid infusion, epinephrine inhibits the endogenous leucine flux. In conclusion, the present results do not provide support for the concept that epinephrine is a catabolic hormone with respect to amino acid-protein metabolism. In contrast, epinephrine markedly inhibits insulin-mediated glucose metabolism.


1985 ◽  
Vol 63 (5) ◽  
pp. 487-494 ◽  
Author(s):  
N. Theresa Glanville ◽  
G. Harvey Anderson

The effect of diabetes (streptozotocin, 65 mg/kg ip), dietary protein intake (15–60%), and plasma amino acid concentrations on brain large neutral amino acid levels in rats was examined. After 20 days, the plasma concentrations of methionine and the branched chain amino acids (BCAA), valine, isoleucine, and leucine were increased in diabetic rats. In brain tissue, methionine and valine levels were increased but threonine, tyrosine, and tryptophan concentrations were depressed. Increased protein consumption promoted a diabetic-like plasma amino acid pattern in normal rats while enhancing that of diabetic animals. However, with the exception of threonine, glycine, valine, and tyrosine, there was little effect on brain amino acid levels. A good association was found between the calculated brain influx rate and the actual brain concentration of threonine, methionine, tyrosine, and tryptophan in diabetic animals. There was no correlation, however, between brain influx rate and brain BCAA levels. Thus, the brain amino acid pattern in diabetes represents the combined effects of insulin insufficiency and composition of the diet ingested on plasma amino acid levels as well as metabolic adaptation within the brain itself.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 473
Author(s):  
Laurie E. Bernstein ◽  
Casey Burns ◽  
Morgan Drumm ◽  
Sommer Gaughan ◽  
Melissa Sailer ◽  
...  

Background: Methylmalonic acidemia (MMA) is an autosomal recessive disorder treated with precursor-free medical food while limiting natural protein. This retrospective chart review was to determine if there was a relationship between medical food, valine (VAL) and/or isoleucine (ILE) supplementation, total protein intake, and plasma amino acid profiles. Methods: A chart review, of patients aged 31 days or older with MMA treated with dietary intervention and supplementation of VAL and/or ILE and followed at the Children’s Hospital Colorado Inherited Metabolic Diseases Clinic. Dietary prescriptions and plasma amino acid concentrations were obtained at multiple time points. Results: Baseline mean total protein intake for five patients was 198% of Recommended Dietary Allowance (RDA) with 107% natural protein and 91% medical food. Following intervention, total protein intake (p = 0.0357), protein from medical food (p = 0.0142), and leucine (LEU) from medical food (p = 0.0276) were lower, with no significant change in natural protein intake (p = 0.2036). At baseline, 80% of patients received VAL supplementation and 100% received ILE supplementation. After intervention, only one of the cohort remained on supplementation. There was no statistically significant difference in plasma propiogenic amino acid concentrations. Conclusions: Decreased intake of LEU from medical food allowed for discontinuation of amino acid supplementation, while meeting the RDA for protein.


1988 ◽  
Vol 77 (1) ◽  
pp. 60-66 ◽  
Author(s):  
E. KINDT ◽  
H. A. LUNDE ◽  
L. R. GJESSING ◽  
S. HALVORSEN ◽  
S. O. LIE

Injury ◽  
2009 ◽  
Vol 40 ◽  
pp. S20-S21
Author(s):  
K.A.P. Wijnands ◽  
Chc. Dejong ◽  
P.R.G. Brink ◽  
M. Poeze

Sign in / Sign up

Export Citation Format

Share Document