scholarly journals PCB126-mediated effects on adipocyte energy metabolism and adipokine secretion may result in abnormal glucose uptake in muscle cells

2020 ◽  
Author(s):  
Audrey Caron ◽  
Fozia Ahmed ◽  
Vian Peshdary ◽  
Léa Garneau ◽  
Ella Atlas ◽  
...  

AbstractBackgroundExposure to coplanar polychlorinated biphenyls (PCBs) is linked to the development of insulin resistance. Previous studies suggested that PCB126 alters muscle mitochondrial function through an indirect mechanism. Since PCBs are stored in fat, we hypothesized that PCB126 alters adipokine secretion, which in turn affects muscle metabolism.ObjectivesThe objectives of this study were: 1) To study the impacts of PCB126 exposure on adipocyte cytokine/adipokine secretion; 2) To determine whether adipocyte-derived factors alter glucose metabolism and mitochondrial function in myotubes when exposed to PCB126; 3) To determine whether pre-established insulin resistance alters the metabolic responses of adipocytes exposed to PCB126 and the communication between adipocytes and myotubes.Method3T3-L1 adipocytes were exposed to PCB126 (1-100 nM) in two insulin sensitivity conditions (insulin sensitive (IS) and insulin resistant (IR) adipocytes), followed by the measurement of secreted adipokines, mitochondrial function and insulin-stimulated glucose uptake. Communication between adipocytes and myotubes was reproduced by exposing C2C12 or mouse primary myotubes to conditioned medium (CM) derived from IS or IR 3T3-L1 adipocytes exposed to PCB126. Mitochondrial function and insulin-stimulated glucose uptake were then determined in myotubes.ResultsPCB126 significantly increased adipokine (adiponectin, IL-6, MCP-1, TNF-α) secretion and decreased mitochondrial function, glucose uptake and glycolysis in IR but not in IS 3T3-L1 adipocytes. Altered energy metabolism in IR 3T3-L1 adipocytes was linked to decreased phosphorylation of AMP-activated protein kinase (p-AMPK) and increased superoxide dismutase 2 levels, an enzyme involved in reactive oxygen species detoxification. Exposure of myotubes to CM from PCB126-treated IR adipocytes decreased glucose uptake, without altering glycolysis or mitochondrial function. Interestingly, p-AMPK levels were increased rather than decreased in myotubes exposed to the CM of PCB126-treated IR adipocytes.ConclusionTaken together, these data suggest that increased adipokine secretion from IR adipocytes exposed to PCB126 may explain impaired glucose uptake in myotubes.

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1623 ◽  
Author(s):  
Filip Vlavcheski ◽  
Evangelia Tsiani

Elevated blood free fatty acids (FFAs), as seen in obesity, impair muscle insulin action leading to insulin resistance and Type 2 diabetes mellitus. Serine phosphorylation of the insulin receptor substrate (IRS) is linked to insulin resistance and a number of serine/threonine kinases including JNK, mTOR and p70 S6K have been implicated in this process. Activation of the energy sensor AMP-activated protein kinase (AMPK) increases muscle glucose uptake, and in recent years AMPK has been viewed as an important target to counteract insulin resistance. We reported recently that rosemary extract (RE) increased muscle cell glucose uptake and activated AMPK. However, the effect of RE on FFA-induced muscle insulin resistance has never been examined. In the current study, we investigated the effect of RE in palmitate-induced insulin resistant L6 myotubes. Exposure of myotubes to palmitate reduced the insulin-stimulated glucose uptake, increased serine phosphorylation of IRS-1, and decreased the insulin-stimulated phosphorylation of Akt. Importantly, exposure to RE abolished these effects and the insulin-stimulated glucose uptake was restored. Treatment with palmitate increased the phosphorylation/activation of JNK, mTOR and p70 S6K whereas RE completely abolished these effects. RE increased the phosphorylation of AMPK even in the presence of palmitate. Our data indicate that rosemary extract has the potential to counteract the palmitate-induced muscle cell insulin resistance and further studies are required to explore its antidiabetic properties.


2020 ◽  
Author(s):  
Chiao-Ming Chen ◽  
Viola Varga ◽  
Lie-Fen Shyur ◽  
Shu-Chi Mu ◽  
Sing-Chung Li

Abstract Background White sweet potato (WSP; I. batatas L. Simon No.1) has many potential beneficial effects on metabolic control and diabetes-related insulin resistance. The improvement of insulin resistance by WSP tuber extracts on glucose uptake were not investigated in C2C12 myoblast cells. Results WSP tuberous ethanol extract (WSP-E), partition with ethyl-acetate and water to got ethyl-acetate layer (WSP-EA) and water layer (WSP-EW) have highest total phenol contents and antioxidant activity respectively. After low concentration horse serum on differentiation inducement of C2C12 myoblasts into mature myotubes, treated with TNF-α to induce insulin resistant, WSP-EA and WSP-EW extracts increased the uptake of fluorescence glucose analogue (2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-d-glucose, 2-NBDG) in a dose depend manner by flow cytometry. The WSP-EA enhanced glucose uptake by activation of phosphorylation of IR (pIR), IRS-1 (pIRS-1) and Akt (pAkt) involved in PI3K (phosphatidylinositol 3-kinase) / protein kinase B (Akt) pathway, also upregulated glucose transporter 4 (GLUT4) expression in myotubes. Conclusions WSP-EA enhanced the glucose uptake in C2C12 myotubes through upregulating the PI3K/Akt pathway. WSP tuber extracts has potential applications to improve insulin resistance in diabetes in vitro.


1994 ◽  
Vol 267 (2) ◽  
pp. E187-E202 ◽  
Author(s):  
A. D. Baron

There is accumulating evidence that insulin has a physiological role to vasodilate skeletal muscle vasculature in humans. This effect occurs in a dose-dependent fashion within a half-maximal response of approximately 40 microU/ml. This vasodilating action is impaired in states of insulin resistance such as obesity, non-insulin-dependent diabetes, and elevated blood pressure. The precise physiological role of insulin-mediated vasodilation is not known. Data indicate that the degree of skeletal muscle perfusion can be an important determinant of insulin-mediated glucose uptake. Therefore, it is possible that insulin-mediated vasodilation is an integral aspect of insulin's overall action to stimulate glucose uptake; thus defective vasodilation could potentially contribute to insulin resistance. In addition, insulin-mediated vasodilation may play a role in the regulation of vascular tone. Data are provided to indicate that the pressor response to systemic norepinephrine infusions is increased in obese insulin-resistant subjects. Moreover, the normal effect of insulin to shift the norepinephrine pressor dose-response curve to the right is impaired in these patients. Therefore, impaired insulin-mediated vasodilation could further contribute to the increased prevalence of hypertension observed in states of insulin resistance. Finally, data are presented to indicate that, via a yet unknown interaction with the endothelium, insulin is able to increase nitric oxide synthesis and release and through this mechanism vasodilate. It is interesting to speculate that states of insulin resistance might also be associated with a defect in insulin's action to modulate the nitric oxide system.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Weidong Xu ◽  
Jiayao Li ◽  
Weipeng Qi ◽  
Ye Peng

Apigenin-8-C-glucoside (vitexin), a natural phytochemical contained in hawthorn, has been reported to have versatile beneficial bioactivities, such as antioxidation, anticancer property, and adipogenesis inhibition. The present research aimed to determine the influence of vitexin on insulin resistance elicited by HFD in mice and HepG2 cells. Vitexin markedly alleviated body weight gain and improved glucose and insulin intolerance induced by HFD. Vitexin partially normalized blood glucose, cholesterol, TNF-α, and hepatic lipid content. Moreover, vitexin recovered the reduced glucose uptake induced by glucosamine. The present results indicate that vitexin prevents HFD-induced insulin resistance.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hong-Jie Chen ◽  
Chih-Yuan Ko ◽  
Jian-Hua Xu ◽  
Yu-Chu Huang ◽  
James Swi-Bea Wu ◽  
...  

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, and most patients with T2DM develop nonalcoholic fatty liver disease (NAFLD). Both diseases are closely linked to insulin resistance (IR). Our previous studies demonstrated that Ruellia tuberosa L. (RTL) extract significantly enhanced glucose uptake in the skeletal muscles and ameliorated hyperglycemia and IR in T2DM rats. We proposed that RTL might be via enhancing hepatic antioxidant capacity. However, the potent RTL bioactivity remains unidentified. In this study, we investigated the effects of RTL on glucose uptake, IR, and lipid accumulation in vitro to mimic the T2DM accompanied by the NAFLD paradigm. FL83B mouse hepatocytes were treated with tumor necrosis factor-α (TNF-α) to induce IR, coincubated with oleic acid (OA) to induce lipid accumulation, and then, treated with RTL fractions, fractionated with n-hexane or ethyl acetate (EA), from column chromatography, and analyzed by thin-layer chromatography. Our results showed that the ethyl acetate fraction (EAf2) from RTL significantly increased glucose uptake and suppressed lipid accumulation in TNF-α plus OA-treated FL83B cells. Western blot analysis showed that EAf2 from RTL ameliorated IR by upregulating the expression of insulin-signaling-related proteins, including protein kinase B, glucose transporter-2, and peroxisome proliferator-activated receptor alpha in TNF-α plus OA-treated FL83B cells. The results of this study suggest that EAf2 from RTL may improve hepatic glucose uptake and alleviate lipid accumulation by ameliorating and suppressing the hepatic insulin signaling and lipogenesis pathways, respectively, in hepatocytes.


2021 ◽  
pp. 1-13

1. Abstract Insulin Resistance is the leading cause of Type 2 diabetes mellitus (T2D). It occurs as a result of lipid disorders and increased levels of circulating free fatty acids (FFAs). FFAs accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues exacerbating different molecular mechanisms. Increased levels fatty acid has been documented to be strongly associated with insulin resistant states and obesity causing inflammation that eventually causes type 2-diabetes. Among the biomarkers that are accompanying low grade inflammation include IL-1β, IL-6 and TNF-α. The current review point out the importance of measuring the inflammatory biomarkers especially focusing on the conductance and measurement for IL-6 as a screening laboratory test and its diagnostic value in clinical practice.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 534 ◽  
Author(s):  
Concepción Santiago-Fernández ◽  
Flores Martin-Reyes ◽  
Mónica Tome ◽  
Luis Ocaña-Wilhelmi ◽  
Jose Rivas-Becerra ◽  
...  

Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects, oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose-dependent increase in tumor necrosis factor-α (TNF-α), IL-6, and adiponectin secretion, and a decrease in leptin secretion. OxLDL produced a significant increase of Lox-1 and a decrease in Cxcl16 and Cl-p1 expression. The expression of Bnip3 (marker of apoptosis, necrosis and autophagy) was significantly increased and Bcl2 (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate Lox-1, and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL.


2006 ◽  
Vol 100 (5) ◽  
pp. 1467-1474 ◽  
Author(s):  
Jong Sam Lee ◽  
Srijan K. Pinnamaneni ◽  
Su Ju Eo ◽  
In Ho Cho ◽  
Jae Hwan Pyo ◽  
...  

Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.


2004 ◽  
Vol 97 (3) ◽  
pp. 991-997 ◽  
Author(s):  
Barry Braun ◽  
Carrie Sharoff ◽  
Stuart R. Chipkin ◽  
Francesca Beaudoin

During exercise, obese individuals oxidize less glycogen and more fat than their lean counterparts, but the shift in substrate use may be mediated by insulin resistance rather than body fat per se. In addition, individuals with Type 2 diabetes are not resistant to contraction-mediated glucose uptake during exercise, but in vivo studies uncomplicated by hyperglycemia are lacking. The purpose of this study was to compare blood glucose uptake and the balance between carbohydrate and fat utilization during exercise in insulin-resistant (IR) and insulin-sensitive (IS) women of equivalent body fatness and maximal oxygen consumption (V̇o2 max). Twelve overweight sedentary women were divided into two groups with similar body mass index (IR = 28.5 ± 1.6, IS = 27.5 ± 1.9), lean mass (IR = 42.4 ± 1.8 kg, IS = 41.5 ± 1.9 kg), and V̇o2 max (IR = 29.7 ± 3.5 ml·kg−1·min−1, IS = 30.7 ± 3.9 ml·kg−1·min−1) but a markedly different composite insulin sensitivity index (IR = 3.0 ± 0.7, IS = 7.7 ± 0.9). Blood glucose kinetics and substrate oxidation were assessed by stable isotope dilution and indirect calorimetry during 50 min of treadmill walking at 45% V̇o2 max. Total carbohydrate oxidation and estimated muscle glycogen use were significantly lower in the IR group. Blood glucose uptake was the same in the IR and IS groups. These data suggest that insulin resistance, independent of body fat, spares muscle glycogen and shifts substrate oxidation toward less carbohydrate use during exercise. Insulin-resistant individuals with normoglycemia appear to have no defect in blood glucose uptake during exercise.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Amirhosein Khoshi ◽  
Golnaz Goodarzi ◽  
Rezvan Mohammadi ◽  
Roghaye Arezumand ◽  
Meysam Moghbeli ◽  
...  

Abstract Background Alpha-synuclein (SNCA) as the presynaptic protein is expressed in different tissues and prevents insulin-resistance (IR) through increasing glucose-uptake by adipocytes and muscles. However, the effect of insulin metabolism on SNCA expression has scarcely elucidated. In present study we assessed the probable effect of insulin resistance on SNCA expression in muscle C2C12 cells and also skeletal muscle tissues of type 2 diabetic mice. Materials and methods Sixteen male C57BL/6 mice were divided into two experimental groups, including control and type 2 diabetic mice with IR (induced by high-fat diet + low-dose streptozotocin). The animals of the study involved the measurements of fasting blood glucose, oral-glucose-tolerance-test, as well as fasting plasma insulin. Moreover, insulin-resistant and insulin-sensitive muscle C2C12 cells were prepared. The insulin-resistance was confirmed by the glucose-uptake assay. Comparative quantitative real time PCR was used to assess the SNCA expression. Results The obtained results have showed a significant ~ 27% decrease in SNCA expression level in muscle tissue of diabetic mice (P = 0.022). Moreover, there was a significant change of SNCA expression in insulin-resistant C2C12 cells (P < 0.001). Conclusion Type 2 diabetes due to insulin-resistance can decrease SNCA gene expression in muscles. In addition to the role of SNCA in cell susceptibility to insulin and glucose uptake, the SNCA expression can also be affected by insulin metabolism.


Sign in / Sign up

Export Citation Format

Share Document