scholarly journals A Lipophilic Fucoxanthin-Rich Phaeodactylum tricornutum Extract Ameliorates Effects of Diet-Induced Obesity in C57BL/6J Mice

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 796 ◽  
Author(s):  
Andrea Gille ◽  
Bojan Stojnic ◽  
Felix Derwenskus ◽  
Andreas Trautmann ◽  
Ulrike Schmid-Staiger ◽  
...  

Phaeodactylum tricornutum (P. tricornutum) comprise several lipophilic constituents with proposed anti-obesity and anti-diabetic properties. We investigated the effect of an ethanolic P. tricornutum extract (PTE) on energy metabolism in obesity-prone mice fed a high fat diet (HFD). Six- to eight-week-old male C57BL/6J mice were switched to HFD and, at the same time, received orally placebo or PTE (100 mg or 300 mg/kg body weight/day). Body weight, body composition, and food intake were monitored. After 26 days, blood and tissue samples were collected for biochemical, morphological, and gene expression analyses. PTE-supplemented mice accumulated fucoxanthin metabolites in adipose tissues and attained lower body weight gain, body fat content, weight of white adipose tissue (WAT) depots, and inguinal WAT adipocyte size than controls, independent of decreased food intake. PTE supplementation was associated with lower expression of Mest (a marker of fat tissue expandability) in WAT depots, lower gene expression related to lipid uptake and turnover in visceral WAT, increased expression of genes key to fatty acid oxidation and thermogenesis (Cpt1, Ucp1) in subcutaneous WAT, and signs of thermogenic activation including enhanced UCP1 protein in interscapular brown adipose tissue. In conclusion, these data show the potential of PTE to ameliorate HFD-induced obesity in vivo.

1989 ◽  
Vol 256 (2) ◽  
pp. R494-R500 ◽  
Author(s):  
H. Shimizu ◽  
N. S. Shargill ◽  
G. A. Bray

Animals with the viable yellow (Avy/a) gene and their corresponding lean control black mice (a/a) were adrenalectomized or sham adrenalectomized, and changes in body weight, body composition, corticosterone, and GDP-binding to mitochondria isolated from interscapular brown adipose tissue (IBAT) were measured. Adrenalectomy slowed the weight gain of both the yellow obese mice and the black lean mice, but the reduction was greater in the yellow mice. Food intake was significantly reduced in the yellow mice. Adrenalectomy in the yellow mouse was associated with an increase in lean mass and a significant decrease in weights of fat depots. Blood glucose concentrations of the adrenalectomized yellow mice were reduced to levels similar to those of lean mice, but insulin levels, although lower than sham-adrenalectomized yellow mice, remained significantly higher than in lean animals. GDP binding to IBAT mitochondria increased after adrenalectomy in both phenotypes to values that were similar. Corticosterone replacement in adrenalectomized yellow mice produced a dose-dependent increase in body weight that was associated with a decrease in muscle weight and an increase in adipose tissue weight. Both desacetyl-melanocyte-stimulating hormone (MSH) and alpha-MSH interacted with corticosterone to increase body weight gain of adrenalectomized yellow mice. Desacetyl-MSH was more effective than alpha-MSH on increasing adipose tissue and liver weights. The effects of desacetyl-MSH on food intake, weight gain, and tissue weights were independent of the adrenal gland or of corticosterone.


2002 ◽  
Vol 283 (6) ◽  
pp. E1173-E1177 ◽  
Author(s):  
Catherine L. Dakin ◽  
Caroline J. Small ◽  
Adrian J. Park ◽  
Asha Seth ◽  
Mohammad A. Ghatei ◽  
...  

Oxyntomodulin (OXM) is a product of proglucagon processing in the intestine and the central nervous system. We reported that intracerebroventricular (ICV) and intranuclear administration of OXM caused an inhibition of food intake in rats (Dakin CL, Gunn I, Small CJ, Edwards CM, Hay DL, Smith DM, Ghatei MA, and Bloom SR. Endocrinology 142: 4244–4250, 2001). In this study, we investigated the effect of twice-daily ICV administration of OXM, 1 nmol, for 7 days. A pair-fed control was included. These animals were restricted to the food intake of the OXM group but injected twice daily with saline. OXM-treated animals gained significantly less weight than either control group ( day 8: OXM, 12.2 ± 1.9 g vs. pair fed, 21.0 ± 2.1 g; P < 0.005). OXM treatment caused a reduction in epididymal white adipose tissue (OXM, 1.13 ± 0.03 g vs. pair fed, 1.29 ± 0.04 g; P < 0.05) and interscapular brown adipose tissue (OXM, 0.15 ± 0.01 g vs. pair fed, 0.18 ± 0.01 g; P < 0.05) and increased core temperature compared with saline control, suggestive of enhanced energy expenditure. The food restriction-induced suppression in plasma TSH, seen in the pair-fed group, was prevented by OXM, potentially via increased release of hypothalamic TRH. In summary, ICV OXM causes reduced body weight gain and body adiposity following chronic administration.


1984 ◽  
Vol 246 (6) ◽  
pp. R943-R948 ◽  
Author(s):  
J. Oku ◽  
G. A. Bray ◽  
J. S. Fisler ◽  
R. Schemmel

The effects of ventromedial hypothalamic (VMH) knife-cut lesions on food intake and body weight of S 5B/Pl rats, which are normally resistant to obesity when eating a high-fat diet, were examined in two experiments. In the first experiment body weight increased only slightly after VMH knife-cut lesions when animals were fed pelleted laboratory chow or a 10% corn oil diet. When eating the 30% corn oil diet, however, body weight increased in the VMH knife-cut rats. In the second experiment VMH knife-cut lesions produced a small weight gain in rats fed the 10% fat diet; this manipulation also increased food intake and disrupted the normal diurnal feeding pattern. Changes in the weight of the liver, interscapular brown adipose tissue, and white adipose tissue paralleled the changes in body weight. Plasma insulin increased in the rats eating the 30% corn oil diet ad libitum but not in the VMH-lesioned animals pair fed to the sham-operated rats. Incorporation of 3H from 3H2O into lipid was significantly increased in white fat of animals with VMH knife cuts. Similar results were obtained from incubation of adipose tissue in vitro with insulin and radioactively labeled glucose. These studies show that hypothalamic knife-cut lesions can remove the resistance of the S 5B/Pl rats to obesity when they are fed a high-fat diet.


1987 ◽  
Vol 252 (2) ◽  
pp. E202-E208 ◽  
Author(s):  
K. Tokuyama ◽  
J. Himms-Hagen

Adrenalectomy normalizes many abnormalities of the obese (ob/ob) mouse. The high corticosterone concentration in blood may account in part for development of obesity and other abnormalities in the ob/ob mouse. Our objective was to determine dose-response relationships for the effect of corticosterone on the obesity. Lean and ob/ob mice were adrenalectomized or sham-operated at 4.5 wk of age. Adrenalectomized mice received 100 mg implants of cholesterol containing corticosterone (0, 2, 5, 20, or 50 mg) at 8.5 wk of age and were killed at 10.5 wk of age. In ob/ob mice, but not in lean mice, low physiological levels of serum corticosterone (up to 10 micrograms/dl) markedly increased body weight gain, food intake, and serum insulin. They also increased white and brown adipose tissue weights and decreased brown adipose tissue mitochondrial GDP binding. Higher levels of corticosterone (12-22 micrograms/dl) increased body weight gain, white and brown adipose tissue weights, and serum insulin and suppressed brown adipose tissue mitochondrial GDP binding in lean mice also, although in most cases to a lesser extent than in ob/ob mice, but were still without effect on food intake. Only very high levels of corticosterone (approximately 30 micrograms/dl) increased food intake in lean mice. Hyperglycemia was induced in ob/ob, but not lean, mice only at concentrations of corticosterone greater than 17 micrograms/dl. Thermoregulation was unaffected by serum corticosterone at levels from 0 to 30 micrograms/dl in both ob/ob and lean mice. Thus the ob/ob mouse is excessively sensitive and responsive to an effect of physiological levels of corticosterone that results in hyperphagia, hyperinsulinemia, and increased weight gain.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 272 (6) ◽  
pp. E1031-E1036 ◽  
Author(s):  
H. Li ◽  
M. Matheny ◽  
P. J. Scarpace

To investigate the role of beta 3-adrenergic receptors in the suppression of leptin gene expression, we fasted F-344 rats to decrease leptin mRNA levels, refed the rats to stimulate leptin mRNA production, and examined the ability of the beta 3-adrenergic agonist CGP-12177 to prevent the rise in leptin mRNA levels. In the initial 2 h after CGP-12177 (0.75 mg/kg), there were significant reductions in both food consumption and leptin mRNA levels in epididymal, perirenal, and interscapular white adipose tissue. We were unable to detect leptin mRNA in interscapular brown adipose tissue (IBAT), whereas there was a significant increase in uncoupling protein mRNA levels in IBAT after CGP-12177. The suppression of leptin mRNA and food intake by CGP-12177 was confirmed in a second experiment using another rat strain, the F-344 x BN. Furthermore, refeeding after a period of fasting increased leptin mRNA, which was prevented by CGP-12177. These data indicate a role for beta 3-adrenergic-mediated regulation of leptin gene expression in nonmutant rodents and are consistent with other reports suggesting that beta 3-adrenergic agonists suppress food intake.


1986 ◽  
Vol 251 (3) ◽  
pp. R433-R440 ◽  
Author(s):  
B. E. Levin ◽  
J. Triscari ◽  
A. C. Sullivan

Diet-induced obesity (DIO) developed in 1-mo-old male Sprague-Dawley rats over an 8-wk period on a relatively high-fat (16%) high-calorie (4.6 kcal/g) diet (DIO diet). Percent carcass lipid (56%) and body weight gain (15%) were greater, whereas food intake was decreased over the first 3-5 wk in DIO diet-compared with chow-fed controls. Overall, 8-wk body weight gain (15%), percent carcass lipid (26%), and feed efficiency (15%) were greater, but food intake was not increased. Norepinephrine (NE) turnover rate, indicative of organ sympathetic activity, increased in interscapular brown adipose tissue (IBAT; 57-218%), heart (21-44%), and pancreas (25%) during the first 3 wk and remained elevated for the entire 8 wk. IBAT weight (51%) and in vitro lipolytic capacity (68%) increased by 1 wk and brown adipocyte size (43%) by 3 wk; IBAT thermogenic capacity (maximal NE-stimulated in vitro O2 consumption) increased by 5 wk (39%). Plasma insulin levels were similar in both diet groups over the entire 8-wk period. Why DIO diet-fed rats had increased metabolic efficiency is unknown, but activation of IBAT metabolism and thermogenesis failed to prevent the development of DIO.


Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2668-2673 ◽  
Author(s):  
Hiroko Matsushita ◽  
Akane Ishihara ◽  
Satoshi Mashiko ◽  
Takeshi Tanaka ◽  
Tetsuya Kanno ◽  
...  

Nociceptin/orphanin FQ (N/OFQ), an endogenous ligand for opioid receptor-like 1 (ORL1), is involved in various central functions, such as pain, psychological stress, locomotor activity, learning and memory, and feeding regulation. Of these functions, the role of N/OFQ in the regulation of feeding has been suggested by the fact that the central administration of N/OFQ leads to feeding behavior. However, the manner in which N/OFQ influences body weight control and subsequent obesity is unclear. To clarify the involvement of N/OFQ in the development of obesity, we evaluated the effects of intracerebroventricular infusion of N/OFQ on food intake and body weight in C57BL/6J mice that were fed a regular chow diet or moderately high-fat (MHF) diet (32.6% kcal fat). N/OFQ significantly increased food intake and body weight both in the regular diet- and MHF diet-fed mice, and these changes were more apparent in the MHF diet-fed mice. When we performed a pair-feeding study in N/OFQ intracerebroventricularly infused mice, N/OFQ did not cause body weight gain but increased white adipose tissue weight and plasma leptin, insulin, and cholesterol levels. N/OFQ reduced rectal temperature in pair-fed mice, in keeping with decreased UCP1 mRNA expression in brown adipose tissue. These results suggest that N/OFQ contributes to the development of obesity not only by inducing hyperphagia but also by decreasing energy expenditure.


2003 ◽  
Vol 284 (5) ◽  
pp. E940-E945 ◽  
Author(s):  
Masahiko Ito ◽  
Akira Gomori ◽  
Akane Ishihara ◽  
Zenjun Oda ◽  
Satoshi Mashiko ◽  
...  

Melanin-concentrating hormone (MCH) is a cyclic orexigenic peptide expressed in the lateral hypothalamus. Recently, we demonstrated that chronic intracerebroventricular infusion of MCH induced obesity accompanied by sustained hyperphagia in mice. Here, we analyzed the mechanism of MCH-induced obesity by comparing animals fed ad libitum with pair-fed and control animals. Chronic infusion of MCH significantly increased food intake, body weight, white adipose tissue (WAT) mass, and liver mass in ad libitum-fed mice on a moderately high-fat diet. In addition, a significant increase in lipogenic activity was observed in the WAT of the ad libitum-fed group. Although body weight gain was marginal in the pair-fed group, MCH infusion clearly enhanced the lipogenic activity in liver and WAT. Plasma leptin levels were also increased in the pair-fed group. Furthermore, MCH infusion significantly reduced rectal temperatures in the pair-fed group. In support of these findings, mRNA expression of uncoupling protein-1, acyl-CoA oxidase, and carnitine palmitoyltransferase I, which are key molecules involved in thermogenesis and fatty acid oxidation, were reduced in the brown adipose tissue (BAT) of the pair-fed group, suggesting that MCH infusion might reduce BAT functions. We conclude that the activation of MCH neuronal pathways stimulated adiposity, in part resulting from increased lipogenesis in liver and WAT and reduced energy expenditure in BAT. These findings confirm that modulation of energy homeostasis by MCH may play a critical role in the development of obesity.


2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


Sign in / Sign up

Export Citation Format

Share Document