scholarly journals Decreased PEDF Promotes Hepatic Fatty Acid Uptake and Lipid Droplet Formation in the Pathogenesis of NAFLD

Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 270
Author(s):  
Kuang-Tzu Huang ◽  
Kuang-Den Chen ◽  
Li-Wen Hsu ◽  
Chao-Pin Kung ◽  
Shu-Rong Li ◽  
...  

Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver diseases worldwide, ranges from simple steatosis to steatohepatitis, with the risk for progressive fibrosis or even cirrhosis. While simple steatosis is a relatively benign condition, the buildup of toxic lipid metabolites can induce chronic inflammation, ultimately triggering disease progression. Pigment epithelium-derived factor (PEDF) is a secreted, multifunctional glycoprotein with lipid metabolic activities. PEDF promotes lipolysis through binding to adipose triglyceride lipase (ATGL), a key enzyme for triglyceride breakdown. In the current study, we aimed to delineate how changes in PEDF expression affect hepatic lipid accumulation. Our data revealed that hepatic PEDF was downregulated in a mouse NAFLD model. We further showed that decreased PEDF levels in hepatocytes in vitro resulted in elevated fatty acid uptake and lipid droplet formation, with concomitant upregulation of fatty acid transport proteins CD36 and fatty acid binding protein 1 (FABP1). RNA sequencing analysis of PEDF knocked down hepatocytes revealed an alteration in gene expression profile toward lipid accumulation. Additionally, decreased PEDF promotes mobilization of fatty acids, an observation distinct from blocking ATGL activity. Taken together, our data suggest that hepatic PEDF downregulation causes molecular changes that favor triglyceride accumulation, which may further lead to NAFLD progression.

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 722 ◽  
Author(s):  
Zhibo Gai ◽  
Tianqi Wang ◽  
Michele Visentin ◽  
Gerd Kullak-Ublick ◽  
Xianjun Fu ◽  
...  

Obesity and hyperlipidemia are the most prevalent independent risk factors of chronic kidney disease (CKD), suggesting that lipid accumulation in the renal parenchyma is detrimental to renal function. Non-esterified fatty acids (also known as free fatty acids, FFA) are especially harmful to the kidneys. A concerted, increased FFA uptake due to high fat diets, overexpression of fatty acid uptake systems such as the CD36 scavenger receptor and the fatty acid transport proteins, and a reduced β-oxidation rate underlie the intracellular lipid accumulation in non-adipose tissues. FFAs in excess can damage podocytes, proximal tubular epithelial cells and the tubulointerstitial tissue through various mechanisms, in particular by boosting the production of reactive oxygen species (ROS) and lipid peroxidation, promoting mitochondrial damage and tissue inflammation, which result in glomerular and tubular lesions. Not all lipids are bad for the kidneys: polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to help lag the progression of chronic kidney disease (CKD). Lifestyle interventions, especially dietary adjustments, and lipid-lowering drugs can contribute to improve the clinical outcome of patients with CKD.


2002 ◽  
Vol 283 (4) ◽  
pp. E775-E783 ◽  
Author(s):  
Minako Imamura ◽  
Toyoshi Inoguchi ◽  
Shoichiro Ikuyama ◽  
Susumu Taniguchi ◽  
Kunihisa Kobayashi ◽  
...  

Adipose differentiation-related protein (ADRP) is a lipid droplet-associated protein that is expressed early during adipose differentiation. The present study was undertaken to reveal the role of ADRP in adipose differentiation. In murine fibroblasts infected with green fluorescent protein (GFP)-ADRP fusion protein expression adenovirus vector, confocal microscopic analysis showed the number and size of lipid droplets apparently increased comparing with those of control cells. Overexpressed GFP-ADRP were mainly located at the surface of lipid droplets and appeared to be “ring-shaped.” Triacylglycerol content was also significantly ( P < 0.001) increased in GFP-ADRP-overexpressed cells compared with control cells. ADRP-induced lipid accumulation did not depend on adipocyte-specific gene induction, such as peroxisome proliferator-activated receptor-γ, lipoprotein lipase, or other lipogenic genes, including acyl-CoA synthetase, fatty acid-binding protein, and fatty acid transporter. In conclusion, ADRP stimulated lipid accumulation and lipid droplet formation without induction of other adipocyte-specific genes or other lipogenic genes in murine fibroblasts. The detailed molecular mechanisms of ADRP on lipid accumulation remain to be elucidated.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Charlotte H. Hulme ◽  
Anna Nicolaou ◽  
Sharon A. Murphy ◽  
Alexander E. P. Heazell ◽  
Jenny E. Myers ◽  
...  

Abstract Diabetes mellitus (DM) during pregnancy can result in fetal overgrowth, likely due to placental dysfunction, which has health consequences for the infant. Here we test our prediction from previous work using a placental cell line that high glucose concentrations affect placental lipid metabolism. Placentas from women with type 1 (n = 13), type 2 (n = 6) or gestational (n = 12) DM, BMI-matched to mothers without DM (n = 18), were analysed for lipase and fatty acid transport proteins and fatty acid and triglyceride content. Explants from uncomplicated pregnancies (n = 6) cultured in physiological or high glucose were similarly analysed. High glucose levels did not alter placental lipase or transporter expression or the profile and abundance of fatty acids, but triglyceride levels were higher (p < 0.05), suggesting reduced β- oxidation. DM did not affect placental protein expression or fatty acid profile. Triglyceride levels of placentas from mothers with pre-existing DM were similar to controls, but higher in obese women with gestational DM. Maternal hyperglycemia may not affect placental fatty acid uptake and transport. However, placental β-oxidation is affected by high glucose and reduced in a subset of women with DM. Abnormal placental lipid metabolism could contribute to increased maternal-fetal lipid transfer and excess fetal growth in some DM pregnancies.


1996 ◽  
Vol 271 (6) ◽  
pp. G1067-G1073
Author(s):  
C. Elsing ◽  
A. Kassner ◽  
W. Stremmel

Fatty acids enter hepatocytes, at least in part, by a carrier-mediated uptake mechanism. The importance of driving forces for fatty acid uptake is still controversial. To evaluate possible driving mechanisms for fatty acid transport across plasma membranes, we examined the role of transmembrane proton gradients on fatty acid influx in primary cultured rat hepatocytes. After hepatocytes were loaded with SNARF-1 acetoxymethyl ester, changes in intracellular pH (pHi) under different experimental conditions were measured and recorded by confocal laser scanning microscopy. Fatty acid transport was increased by 45% during cellular alkalosis, achieved by adding 20 mM NH4Cl to the medium, and a concomitant paracellular acidification was observed. Fatty acid uptake was decreased by 30% during cellular acidosis after withdrawal of NH4Cl from the medium. Cellular acidosis activates the Na+/H+ antiporter to export excessive protons to the outer cell surface. Inhibition of Na+/H+ antiporter activity by amiloride diminishes pHi recovery and thereby accumulation of protons at the outer surface of the plasma membrane. Under these conditions, fatty acid uptake was further inhibited by 57% of control conditions. This suggests stimulation of fatty acid influx by an inwardly directed proton gradient. The accelerating effect of protons at the outer surface of the plasma membrane was confirmed by studies in which pH of the medium was varied at constant pHi. Significantly higher fatty acid influx rates were observed at low buffer pH. Recorded differences in fatty acid uptake appeared to be independent of changes in membrane potential, because BaCl2 did not influence initial uptake velocity during cellular alkalosis and paracellular acidosis. Moreover, addition of oleate-albumin mixtures to the NH4Cl incubation buffer did not change the observed intracellular alkalinization. In contrast, after cells were acid loaded, addition of oleate-albumin solutions to the recovery buffer increased pHi recovery rates from 0.21 +/- 0.02 to 0.36 +/- 0.05 pH units/min (P < 0.05), indicating that fatty acids further stimulate Na+/H+ antiporter activity during pHi recovery from an acid load. It is concluded that carrier-mediated uptake of fatty acids in hepatocytes follows an inwardly directed transmembrane proton gradient and is stimulated by the presence of H+ at the outer surface of the plasma membrane.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Mirko Marino ◽  
Massimiliano Tucci ◽  
Valentina Taverniti ◽  
Patrizia Riso ◽  
Marisa Porrini ◽  
...  

AbstractPolyphenols are bioactive molecules widely distributed in numerous foods such as fruits, vegetables, tea, coffee, cocoa and beverages. Their main classification include flavonoids (i.e. flavonols, flavones, flavanones, flavanols, anthocyanins, and isoflavones), non-flavonoids (i.e. lignans and stilbens) and phenolic acids (i.e. hydroxycinnamic and hydroxybenzoic acids)(1). Caffeic acid (CA) and chlorogenic acid (CGA; an ester of CA and quinic acid) are the major representatives of hydroxycinnamic acids. Accumulating evidence has demonstrated that CA and CGA may exert different biological activities, including antioxidant, anti-inflammatory, antidiabetic, and antihypertensive(2). Despite these promising and diverse anti-atherosclerotic actions, investigations addressing the effect of CA and CGA on atherogenesis are scarce.The present study evaluated the capacity of CA and CGA to reduce lipid accumulation in macrophages derived from monocytic THP-1 cells. THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different concentrations (from 0.03 to 3 μM) of CA and CGA, alone or in combination. Lipid accumulation was quantified spectrophotometrically (excitation: 544 nm, emission: 590 nm) with the fluorescent dye, Nile red. The fold increase compared to the control (without fatty acids) was calculated. In addition, the expression of several transcription factors including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein (CEBP), as potential mechanisms involved in the regulation of lipid accumulation, was evaluated by real time PCR.Analysis of variance (ANOVA) was used to assess the effect of the different concentrations of CA and CGA on lipid accumulation in THP-1 macrophages following stimulation with FA.The preliminary results obtained have shown a significant increase in lipid accumulation following fatty acid exposure (p < 0.0001). Incubation with CA and CGA did not reduce lipid accumulation in THP-1 derived macrophages, while the combination of CA + CGA at 0.03, 0.3 and 3 μM (p < 0.01) decreased cellular fatty acid uptake at all concentrations tested by -28%, -32%, -23%, respectively. An apparent modulation of the transcriptional activity of PPARγ, but not CEBP, was observed following the combination of phenolic acids.In conclusion, the incubation of CA + CGA at physiologically relevant concentrations, but not the single compounds, seem to reduce the uptake of fatty acids in THP-1-derived macrophages. Further experiments are ongoing in order to confirm the findings obtained and to better identify the mechanisms of action involved in the reduction of lipid accumulation as a key phenomenon of atherogenesis.


1975 ◽  
Vol 228 (6) ◽  
pp. 1656-1662 ◽  
Author(s):  
AC Beardsley ◽  
AM Lefer

Isolated hearts form chronically adrenalectomized cats were perfused with Krebs-Henseleit buffer plus either glucose (10mM) or palmitate (0.4 mM) under various conditions of constant pressure and constant flow. Glucose uptake in adrenalectomizedhearts was not diminished from control values under conditions of constant pressure, constant flow, anoxia, or insulin stimulation. Palmatic acid uptake and oxygen consumption were significantly reduced (P less than 0.02) in adrenalectomized hearts. This diminished fatty acid utilization was also reflected in a significantly lower CO'2 production and incorporation of the palmitate into myocardial triglycerides. The decreased fatty acid uptake by adrenalectomized cat hearts may represent aserious defect in myocardial metabolism since lipids are the major energy substrate forthe heart. Whether the defect occurs in fatty acid transport or activation cannot beelucidated by this study. However, it is unlikely that this defect has a major contributory effect on the dysfunction of adrenalectomized hearts since the myocardium iscabable of using other energy substrates readily.


Sign in / Sign up

Export Citation Format

Share Document