scholarly journals Aerobic Exercise Training Prevents Insulin Resistance and Hepatic Lipid Accumulation in LDL Receptor Knockout Mice Chronically Fed a Low-Sodium Diet

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2174
Author(s):  
Guilherme da Silva Ferreira ◽  
Ana Paula Garcia Bochi ◽  
Paula Ramos Pinto ◽  
Vanessa Del Bianco ◽  
Letícia Gomes Rodrigues ◽  
...  

Background: A low-sodium (LS) diet reduces blood pressure, contributing to the prevention of cardiovascular diseases. However, intense dietary sodium restriction impairs insulin sensitivity and worsens lipid profile. Considering the benefits of aerobic exercise training (AET), the effect of LS diet and AET in hepatic lipid content and gene expression was investigated in LDL receptor knockout (LDLr-KO) mice. Methods: Twelve-week-old male LDLr-KO mice fed a normal sodium (NS) or LS diet were kept sedentary (S) or trained (T) for 90 days. Body mass, plasma lipids, insulin tolerance testing, hepatic triglyceride (TG) content, gene expression, and citrate synthase (CS) activity were determined. Results were compared by 2-way ANOVA and Tukey’s post-test. Results: Compared to NS, LS increased body mass and plasma TG, and impaired insulin sensitivity, which was prevented by AET. The LS-S group, but not the LS-T group, presented greater hepatic TG than the NS-S group. The LS diet increased the expression of genes related to insulin resistance (ApocIII, G6pc, Pck1) and reduced those involved in oxidative capacity (Prkaa1, Prkaa2, Ppara, Lipe) and lipoprotein assembly (Mttp). Conclusion: AET prevented the LS-diet-induced TG accumulation in the liver by improving insulin sensitivity and the expression of insulin-regulated genes and oxidative capacity.

Diabetes ◽  
2003 ◽  
Vol 52 (8) ◽  
pp. 1888-1896 ◽  
Author(s):  
K. R. Short ◽  
J. L. Vittone ◽  
M. L. Bigelow ◽  
D. N. Proctor ◽  
R. A. Rizza ◽  
...  

2019 ◽  
Vol 287 ◽  
pp. e94
Author(s):  
P. Ramos Pinto ◽  
V. Del Bianco ◽  
A.P. Garcia Bochi ◽  
G. Silva Ferreira ◽  
M. da Silva Trevisani ◽  
...  

2020 ◽  
pp. 1-14
Author(s):  
H.O. Ness ◽  
K. Ljones ◽  
M. Pinho ◽  
M.A. Høydal

Regular aerobic exercise training has a wide range of beneficial cardiac effects, but recent data also show that acute very strenuous aerobic exercise may impose a transient cardiac exhaustion. The aim of this study was to assess the response to acute high-intensity aerobic exercise on properties of mitochondrial respiration, cardiomyocyte contractile function, Ca2+ handling and transcriptional changes for key proteins facilitating Ca2+ handling and endoplasmic reticulum (ER) stress responses in type 2 diabetic mice. Diabetic mice were assigned to either sedentary control or an acute bout of exercise, consisting of a 10×4 minutes high-intensity interval treadmill run. Mitochondrial respiration, contractile and Ca2+ handling properties of cardiomyocytes were analysed 1 hour after completion of exercise. Gene expression levels of key Ca2+ handling and ER stress response proteins were measured in cardiac tissue samples harvested 1 hour and 24 hours after exercise. We found no significant changes in mitochondrial respiration, cardiomyocyte contractile function or Ca2+ handling 1 hour after the acute exercise. However, gene expression of Atp2a2, Slc8a1 and Ryr2, encoding proteins involved in cardiomyocyte Ca2+ handling, were all significantly upregulated 24 hours after the acute exercise bout. Acute exercise also altered gene expression of several key proteins in ER stress response and unfolded protein response, including Grp94, total Xbp1, Gadd34, and Atf6. The present results show that despite no significant alterations in functional properties of cardiomyocyte function, Ca2+ handling or mitochondrial respiration following one bout of high intensity aerobic exercise training, the expression of genes involved in Ca2+ handling and key components in ER stress and the unfolded protein response were changed. These transcriptional changes may constitute important steps in initiating adaptive remodelling to exercise training in type 2 diabetes.


2012 ◽  
Vol 37 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Cheyne E. Donges ◽  
Rob Duffield

The purpose of this study was to examine the effects of 10 weeks of aerobic endurance training (AET), resistance exercise training (RET), or a control (CON) condition on absolute and relative fat mass (FM) or fat-free mass (FFM) in the total body (TB) and regions of interest (ROIs) of sedentary overweight middle-aged males and females. Following prescreening, 102 subjects underwent anthropometric measurements, dual-energy X-ray absorptiometry, and strength and aerobic exercise testing. Randomized subjects (male RET, n = 16; female RET, n = 19; male AET, n = 16; and female AET, n = 25) completed supervised and periodized exercise programs (AET, 30–50 min cycling at 70%–75% maximal heart rate; RET, 2–4 sets × 8–10 repetitions of 5–7 exercises at 70%–75% 1 repetition maximum) or a nonexercising control condition (male CON, n = 13 and female CON, n = 13). Changes in absolute and relative TB-FM and TB-FFM and ROI-FM and ROI-FFM were determined. At baseline, and although matched for age and body mass index, males had greater strength, aerobic fitness, body mass, absolute and relative TB-FFM and ROI-FFM, but reduced absolute and relative TB-FM and ROI-FM, compared with females (p < 0.05). After training, both female exercise groups showed equivalent or greater relative improvements in strength and aerobic fitness than did the male exercise groups (p < 0.05); however, the male exercise groups increased TB-FFM and reduced TB-FM more than did the female exercise groups (p < 0.05). Male AET altered absolute FM more than male RET altered absolute FFM, thus resulting in a greater enhancement of relative FFM. Despite equivalent or greater responses to RET or AET by female subjects, the corresponding respective increases in FFM or reductions in FM were lower than those in males, indicating that a biased dose–response relationship exists between sexes following 10 weeks of exercise training.


Sign in / Sign up

Export Citation Format

Share Document