scholarly journals A Role for Peripheral Anandamide and 2-Arachidonoylglycerol in Short-Term Food Intake and Orexigenic Hypothalamic Responses in a Species with Continuous Nutrient Delivery

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3587
Author(s):  
Isabel van Ackern ◽  
Angela Kuhla ◽  
Björn Kuhla

The endocannabinoid system (ECS) plays a pivotal role in the complex control and regulation of food intake. Pharmacological ECS activation could improve health in energy-deficient stages by increasing food intake, at least in intermittent feeders. However, knowledge of the mechanism regulating appetite in species with continued nutrient delivery is incomplete. The objectives of this pilot study were to investigate the effect of the intraperitoneal (i.p.) administration of the endocannabinoids (ECs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on food intake, plasma EC concentrations and hypothalamic orexigenic signaling, and to study how the circulatory EC tone changes in response to short-term food deprivation in dairy cows, a species with continuous nutrient delivery. The administration of EC resulted in higher food intake during the first hour after treatment. Plasma AEA concentrations were significantly increased 2.5 h after AEA injection, whereas plasma 2-AG concentrations remained unchanged 2.5 h after 2-AG injection. The hypothalamic immunoreactivity of cannabinoid receptor 1, agouti-related protein, and orexin-A was not affected by either treatment; however, neuropeptide Y and agouti-related protein mRNA abundances were downregulated in the arcuate nucleus of AEA-treated animals. Short-term food deprivation increased plasma 2-AG, while plasma AEA remained unchanged. In conclusion, i.p.-administered 2-AG and AEA increase food intake in the short term, but only AEA accumulates in the circulation. However, plasma 2-AG concentrations are more responsive to food deprivation than AEA.

Obesity ◽  
2008 ◽  
Vol 16 (11) ◽  
pp. 2451-2455 ◽  
Author(s):  
Marianne F. Bennetzen ◽  
Maria P. Nielsen ◽  
Bjørn Richelsen ◽  
Steen B. Pedersen

2004 ◽  
Vol 80 (4) ◽  
pp. 210-218 ◽  
Author(s):  
Christine G. Wagner ◽  
Chris D. McMahon ◽  
Daniel L. Marks ◽  
Joseph A. Daniel ◽  
Barbara Steele ◽  
...  

2009 ◽  
Vol 106 (37) ◽  
pp. 15932-15937 ◽  
Author(s):  
Louise E. Olofsson ◽  
Andrew A. Pierce ◽  
Allison W. Xu

In female mammals including rodents and humans, feeding decreases during the periovulatory period of the ovarian cycle, which coincides with a surge in circulating estrogen levels. Ovariectomy increases food intake, which can be normalized by estrogen treatment at a dose and frequency mimicking those during the estrous cycle. Furthermore, administration of estrogen to rodents potently inhibits food intake. Despite these well-known effects of estrogen, neuronal subtypes that mediate estrogen's anorexigenic effects have not been identified. In this study, we show that changes in hypothalamic expression of agouti-related protein (Agrp) and neuropeptide Y (Npy) coincide with the cyclic changes in feeding across the estrous cycle. These cyclic changes in feeding are abolished in mice with degenerated AgRP neurons even though these mice cycle normally. Central administration of 17β-estradiol (E2) decreases food intake in controls but not in mice lacking the AgRP neurons. Furthermore, E2 treatment suppresses fasting-induced c-Fos activation in AgRP and NPY neurons and blunts the refeeding response. Surprisingly, although estrogen receptor alpha (ERα) is the key mediator of estrogen's anorexigenic effects, we find that expression of ERα is completely excluded from AgRP and NPY neurons in the mouse hypothalamus, suggesting that estrogen may regulate these neurons indirectly via presynaptic neurons that express ERα. This study indicates that neurons coexpressing AgRP and NPY are functionally required for the cyclic changes in feeding across estrous cycle and that AgRP and NPY neurons are essential mediators of estrogen's anorexigenic function.


Endocrinology ◽  
1999 ◽  
Vol 140 (6) ◽  
pp. 2645-2650 ◽  
Author(s):  
Peilin Chen ◽  
Chien Li ◽  
Carrie Haskell-Luevano ◽  
Roger D. Cone ◽  
M. Susan Smith

Abstract During lactation, the levels of neuropeptide Y (NPY), which plays an important role in mediating food intake, are significantly elevated in a number of hypothalamic areas, including the arcuate nucleus (ARH). To identify additional hypothalamic systems that might be important in mediating the increase in food intake and alterations in energy homeostasis during lactation, the present studies examined the expression of agouti-related protein (AGRP), a recently described homologue of the skin agouti protein. AGRP is found in the hypothalamus and has been suggested to play an important role in the regulation of food intake. In the first experiment, animals were studied during diestrus of the estrous cycle, a stage of the cycle when estrogen levels are basal and similar to lactation, or during days 12–13 postpartum. Lactating animals had their litters adjusted to eight pups on day 2 postpartum. Brain tissue sections were used to measure AGRP messenger RNA (mRNA) levels by in situ hybridization. AGRP mRNA signal was found mostly in the ventromedial portion of the ARH, which has been shown to contain a high density of NPY neurons. A significant increase in AGRP mRNA content was observed in the mid- to caudal portion of the ARH of lactating animals compared with diestrous females. No difference was found in the rostral portion of the ARH. In the second experiment, double-label in situ hybridization for AGRP and NPY was performed in lactating animals to determine the extent of colocalization of the two peptides in the ARH, using 35S-labeled and digoxigenin-labeled antisense complementary RNA probes. It was found that almost all of the NPY-positive neurons throughout the ARH also expressed AGRP mRNA signal. Furthermore, AGRP expression was confined almost exclusively to NPY-positive neurons. Thus, the present study showed that during lactation, AGRP gene expression was significantly elevated in a subset of the AGRP neurons in the ARH. The high degree of colocalization of AGRP and NPY, coupled with previous reports from our laboratory demonstrating increased NPY expression in the ARH in response to suckling, suggests that AGRP and NPY are coordinately regulated and may be involved in the increase in food intake during lactation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amelia Dahlén ◽  
Mahdi Zarei ◽  
Adam Melgoza ◽  
Mahendra Wagle ◽  
Su Guo

AbstractHigh doses of the Cannabis constituent Δ9-tetrahydrocannabinol (THC) increase the risk of psychosis in humans. Highly accessible animal models are needed to address underlying mechanisms. Using zebrafish with a conserved endocannabinoid system, this study investigates the acute effects of THC on adult zebrafish behavior and the mechanisms involved. A concentration-dependent THC-induced behavioral stereotypy akin to THC’s effect in rats and the psychotropics phencyclidine and ketamine in zebrafish was established. Distinctive circular swimming during THC-exposure was measured using a novel analytical method that we developed, which detected an elevated Repetition Index (RI) compared to vehicle controls. This was reduced upon co-administration of N-methyl-D-aspartate (NMDA) receptor agonist NMDA, suggesting that THC exerts its effects via biochemical or neurobiological mechanisms associated with NMDA receptor antagonism. Co-treatment of γ‐aminobutyric acid receptor antagonist pentylenetetrazol also showed signs of reducing the RI. Since THC-induced repetitive behavior remained in co-administrations with cannabinoid receptor 1 inverse agonist AM251, the phenotype may be cannabinoid receptor 1-independent. Conversely, the inverse cannabinoid receptor 2 agonist AM630 significantly reduced THC-induced behavioral stereotypy, indicating cannabinoid receptor 2 as a possible mediator. A significant reduction of the THC-RI was also observed by the antipsychotic sulpiride. Together, these findings highlight this model’s potential for elucidating the mechanistic relationship between Cannabis and psychosis.


2003 ◽  
Vol 284 (2) ◽  
pp. R494-R499 ◽  
Author(s):  
Deborah J. Clegg ◽  
Ellen L. Air ◽  
Stephen C. Benoit ◽  
Randall S. Sakai ◽  
Randy J. Seeley ◽  
...  

The lateral hypothalamus (LH) has a critical role in the control of feeding and drinking. Melanin-concentrating hormone (MCH) is an orexigenic peptidergic neurotransmitter produced primarily in the LH, and agouti-related protein (AgRP) is an orexigenic peptidergic neurotransmitter produced exclusively in the arcuate (ARC), an area that innervates the LH. We assessed drinking and eating after third ventricular (i3vt) administration of MCH and AgRP. MCH (2.5, 5, and 10 μg i3vt) significantly increased food as well as water intake over 4 h when administered during either the light or the dark portion of the day-night cycle. When MCH (5 μg) was administered to rats with access to water but no food, they drank significantly more water than when given the vehicle. AgRP (7 μg i3vt), on the other hand, increased water intake but only in proportion to food intake during the dark and the light, and water intake was not increased after i3vt AgRP in the absence of food. Hence, in contrast to AgRP, MCH elicits increased water intake independent of food intake. These results are consistent with historical data linking activity of the LH with water as well as food intake.


Endocrinology ◽  
2003 ◽  
Vol 144 (4) ◽  
pp. 1420-1425 ◽  
Author(s):  
Waljit S. Dhillo ◽  
Caroline J. Small ◽  
Preeti H. Jethwa ◽  
Sabina H. Russell ◽  
James V. Gardiner ◽  
...  

Abstract Calcitonin gene-related protein (CGRP) inhibits food intake and stimulates the hypothalamo-pituitary-adrenal (HPA) axis after intracerebroventricular injection in rats. However, the hypothalamic site and mechanism of action are unknown. We investigated the effects of intraparaventricular nucleus administration (iPVN) of CGRP on food intake and the HPA axis in rats and the effect of CGRP on the release of hypothalamic neuropeptides in vitro. In addition, we investigated the effects of food deprivation on hypothalamic CGRP expression. CGRP dose-dependently reduced food intake in the first hour after iPVN injection in fasted male rats (saline, 5.1 ± 0.8 g; 0.3 nmol CGRP, 1.1 ± 0.5 g; P < 0.001 vs. saline). iPVN injection of CGRP8–37 (a CGRP1 receptor antagonist) alone had no effect on food intake. However, the reduction in food intake by iPVN CGRP was attenuated by prior administration of CGRP8–37 [CGRP8–37 (10 nmol)/CGRP (0.3 nmol), 3.0 ± 0.8 g; P < 0.05 vs. 0.3 nmol CGRP]. CGRP (100 nm) stimulated the release of α-melanocyte stimulating hormone, cocaine- and amphetamine-related transcript, corticotropin-releasing hormone, and arginine vasopressin from hypothalamic explants to 127 ± 19%, 148 ± 10%, 158 ± 17%, and 198 ± 21% of basal levels, respectively (P < 0.05 vs. basal), but did not alter the release of either neuropeptide Y or agouti-related protein. Hypothalamic CGRP mRNA levels in 24-h fasted rats were increased to 130 ± 8% of control levels [CGRP mRNA (arbitrary units), 4.75 ± 0.4; controls, 3.65 ± 0.34; P < 0.05]. Our data suggest that CGRP administered to the PVN inhibits food intake and stimulates the HPA axis.


Sign in / Sign up

Export Citation Format

Share Document