scholarly journals A Review of the Synthetic Strategies toward Dihydropyrrolo[1,2-a]Pyrazinones

Organics ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 118-141
Author(s):  
Pieterjan Winant ◽  
Tomas Horsten ◽  
Shaiani Gil de Melo ◽  
Flavio Emery ◽  
Wim Dehaen

Dihydropyrrolo[1,2-a]pyrazinone rings are a class of heterocycles present in a wide range of bioactive natural products and analogues thereof. As a direct result of their bioactivity, the synthesis of this privileged class of compounds has been extensively studied. This review provides an overview of these synthetic pathways. The literature is covered up until 2020 and is organized according to the specific strategies used to construct the scaffold: fusing a pyrazinone to an existing pyrrole, employing a pyrazinone-first strategy, an array of multicomponent reactions and some miscellaneous reactions.

2019 ◽  
Vol 17 (5) ◽  
pp. 1027-1036 ◽  
Author(s):  
Hsiao-Ching Lin ◽  
Ranuka T. Hewage ◽  
Yuan-Chun Lu ◽  
Yit-Heng Chooi

The club fungi, Basidioycota, produce a wide range of bioactive compounds. Here, we describe recent studies on the biosynthetic pathways and enzymes of bioactive natural products from these fungi.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 468 ◽  
Author(s):  
Sang ◽  
Dat ◽  
Vinh ◽  
Cuong ◽  
Oanh ◽  
...  

Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.


Molbank ◽  
10.3390/m1193 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1193
Author(s):  
Angelica Artasensi ◽  
Giovanna Baron ◽  
Giulio Vistoli ◽  
Giancarlo Aldini ◽  
Laura Fumagalli

Over the years secondary metabolites have been considered as lead molecules both in their natural form and as templates for medicinal chemistry. Some secondary metabolites such as polyphenols and flavan-3-ols exert beneficial effects after a modification by the microbiota. Synthetic precursors of some of these modified compounds, in turn, carried a γ-alkylidenebutenolide moiety which characterizes a large class of bioactive natural products endowed with a wide range of biological activities. For these reasons stereoselective preparation of γ-alkylidenebutenolide continues to be an important issue for organic chemists. Our objective is to synthetize the novel compound (Z)-5-(3′,4′-bis(benzyloxy)benzylidene)furan-2(5H)-one in a stereocontrolled-one-pot reaction. The product was obtained in good yield. Furthermore, the theoretical investigation of the transition states suggests a new procedure to achieve Z-isomer of β-unsubstituted γ-alkylidenebutenolide.


Synthesis ◽  
2020 ◽  
Author(s):  
Shrikant G. Pharande

AbstractLactams are very important heterocycles as a result of their presence in a wide range of bioactive molecules, natural products and drugs, and also due their utility as versatile synthetic intermediates. Due to these reasons, numerous efforts have focused on the development of effective and efficient methods for their synthesis. Compared to conventional two-component reactions, multicomponent reactions (MCRs), particularly isocyanide-based MCRs, are widely used for the synthesis of a range of small heterocycles including lactam analogues. Despite their numerous applications in almost every field of chemistry, as yet there is no dedicated review on isocyanide-based multicomponent reactions (IMCRs) concerning the synthesis of lactams. Therefore, this review presents strategies towards the synthesis of α-, β-, γ-, δ- and ε-lactams using IMCRs or IMCRs/post-transformation reactions reported in the literature between 2000 and 2020.1 Introduction2 Developments in Lactam Synthesis2.1 α-Lactams2.2 β-Lactams2.3 γ-Lactams2.3.1 General γ-Lactams2.3.2 Benzo-Fused γ-Lactams2.3.3 Spiro γ-Lactams2.3.4 α,β-Unsaturated γ-Lactams2.3.5 Polycyclic Fused γ-Lactams2.4 δ-Lactams2.5 ε-Lactams3 Conclusions


Planta Medica ◽  
2012 ◽  
Vol 78 (05) ◽  
Author(s):  
JG Dai ◽  
RD Chen ◽  
D Xie ◽  
JH Li ◽  
K Wang ◽  
...  

2020 ◽  
Vol 24 (4) ◽  
pp. 354-401 ◽  
Author(s):  
Keisham S. Singh

Marine natural products (MNPs) containing pyrone rings have been isolated from numerous marine organisms, and also produced by marine fungi and bacteria, particularly, actinomycetes. They constitute a versatile structure unit of bioactive natural products that exhibit various biological activities such as antibiotic, antifungal, cytotoxic, neurotoxic, phytotoxic and anti-tyrosinase. The two structure isomers of pyrone ring are γ- pyrone and α-pyrone. In terms of chemical motif, γ-pyrone is the vinologous form of α- pyrone which possesses a lactone ring. Actinomycete bacteria are responsible for the production of several α-pyrone compounds such as elijopyrones A-D, salinipyrones and violapyrones etc. to name a few. A class of pyrone metabolites, polypropionates which have fascinating carbon skeleton, is primarily produced by marine molluscs. Interestingly, some of the pyrone polytketides which are found in cone snails are actually synthesized by actinomycete bacteria. Several pyrone derivatives have been obtained from marine fungi such as Aspergillums flavus, Altenaria sp., etc. The γ-pyrone derivative namely, kojic acid obtained from Aspergillus fungus has high commercial demand and finds various applications. Kojic acid and its derivative displayed inhibition of tyrosinase activity and, it is also extensively used as a ligand in coordination chemistry. Owing to their commercial and biological significance, the synthesis of pyrone containing compounds has been given attention over the past years. Few reviews on the total synthesis of pyrone containing natural products namely, polypropionate metabolites have been reported. However, these reviews skipped other marine pyrone metabolites and also omitted discussion on isolation and detailed biological activities. This review presents a brief account of the isolation of marine metabolites containing a pyrone ring and their reported bio-activities. Further, the review covers the synthesis of marine pyrone metabolites such as cyercene-A, placidenes, onchitriol-I, onchitriol-II, crispatene, photodeoxytrichidione, (-) membrenone-C, lihualide-B, macrocyclic enol ethers and auripyrones-A & B.


Sign in / Sign up

Export Citation Format

Share Document