scholarly journals Bulk Viscous Damping of Density Oscillations in Neutron Star Mergers

Particles ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 500-517 ◽  
Author(s):  
Mark Alford ◽  
Arus Harutyunyan ◽  
Armen Sedrakian

In this paper, we discuss the damping of density oscillations in dense nuclear matter in the temperature range relevant to neutron star mergers. This damping is due to bulk viscosity arising from the weak interaction “Urca” processes of neutron decay and electron capture. The nuclear matter is modelled in the relativistic density functional approach. The bulk viscosity reaches a resonant maximum close to the neutrino trapping temperature, then drops rapidly as temperature rises into the range where neutrinos are trapped in neutron stars. We investigate the bulk viscous dissipation timescales in a post-merger object and identify regimes where these timescales are as short as the characteristic timescale ∼10 ms, and, therefore, might affect the evolution of the post-merger object. Our analysis indicates that bulk viscous damping would be important at not too high temperatures of the order of a few MeV and densities up to a few times saturation density.

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


2021 ◽  
Vol 252 ◽  
pp. 05004
Author(s):  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

The knowledge of the equation of state is a key ingredient for many dynamical phenomena that depend sensitively on the hot and dense nuclear matter, such as the formation of protoneutron stars and hot neutron stars. In order to accurately describe them, we construct equations of state at FInite temperature and entropy per baryon for matter with varying proton fractions. This procedure is based on the momentum dependent interaction model and state-of-the-art microscopic data. In addition, we investigate the role of thermal and rotation effects on microscopic and macroscopic properties of neutron stars, including the mass and radius, the frequency, the Kerr parameter, the central baryon density, etc. The latter is also connected to the hot and rapidly rotating remnant after neutron star merger. The interplay between these quantities and data from late observations of neutron stars, both isolated and in matter of merging, could provide useful insight and robust constraints on the equation of state of nuclear matter.


2018 ◽  
Vol 609 ◽  
pp. A128 ◽  
Author(s):  
Ignazio Bombaci ◽  
Domenico Logoteta

Aims. We report a new microscopic equation of state (EOS) of dense symmetric nuclear matter, pure neutron matter, and asymmetric and β-stable nuclear matter at zero temperature using recent realistic two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) and including the Δ(1232) isobar intermediate state. This EOS is provided in tabular form and in parametrized form ready for use in numerical general relativity simulations of binary neutron star merging. Here we use our new EOS for β-stable nuclear matter to compute various structural properties of non-rotating neutron stars. Methods. The EOS is derived using the Brueckner–Bethe–Goldstone quantum many-body theory in the Brueckner–Hartree–Fock approximation. Neutron star properties are next computed solving numerically the Tolman–Oppenheimer–Volkov structure equations. Results. Our EOS models are able to reproduce the empirical saturation point of symmetric nuclear matter, the symmetry energy Esym, and its slope parameter L at the empirical saturation density n0. In addition, our EOS models are compatible with experimental data from collisions between heavy nuclei at energies ranging from a few tens of MeV up to several hundreds of MeV per nucleon. These experiments provide a selective test for constraining the nuclear EOS up to ~4n0. Our EOS models are consistent with present measured neutron star masses and particularly with the mass M = 2.01 ± 0.04 M⊙ of the neutron stars in PSR J0348+0432.


2021 ◽  
Vol 252 ◽  
pp. 05005
Author(s):  
Alkiviadis Kanakis-Pegios ◽  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

One of the greatest interest and open problems in nuclear physics is the upper limit of the speed of sound in dense nuclear matter. Neutron stars, both in isolated and binary system cases, constitute a very promising natural laboratory for studying this kind of problem. This present work is based on one of our recent study, regarding the speed of sound and possible constraints that we can obtain from neutron stars. To be more specific, in the core of our study lies the examination of the speed of sound through the measured tidal deformability of a binary neutron star system (during the inspiral phase). The relation between the maximum neutron star mass scenario and the possible upper bound on the speed of sound is investigated. The approach that we used follows the contradiction between the recent observations of binary neutron star systems, in which the effective tidal deformability favors softer equations of state, while the high measured masses of isolated neutron stars favor stiffer equations of state. In our approach, we parametrized the stiffness of the equation of state by using the speed of sound. Moreover, we used the two recent observations of binary neutron star mergers from LIGO/VIRGO, so that we can impose robust constraints on the speed of sound. Furthermore, we postulate the kind of future measurements that could be helpful by imposing more stringent constraints on the equation of state.


Author(s):  
J.M. Lattimer

Neutron stars provide a window into the properties of dense nuclear matter. Several recent observational and theoretical developments provide powerful constraints on their structure and internal composition. Among these are the first observed binary neutron star merger, GW170817, whose gravitational radiation was accompanied by electromagnetic radiation from a short γ-ray burst and an optical afterglow believed to be due to the radioactive decay of newly minted heavy r-process nuclei. These observations give important constraints on the radii of typical neutron stars and on the upper limit to the neutron star maximum mass and complement recent pulsar observations that established a lower limit. Pulse-profile observations by the Neutron Star Interior Composition Explorer (NICER) X-ray telescope provide an independent, consistent measure of the neutron star radius. Theoretical many-body studies of neutron matter reinforce these estimates of neutron star radii. Studies using parameterized dense matter equations of state (EOSs) reveal several EOS-independent relations connecting global neutron star properties. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Particles ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 481-490
Author(s):  
Peter Senger ◽  
Dmitrii Dementev ◽  
Johann Heuser ◽  
Mikhail Kapishin ◽  
Evgeny Lavrik ◽  
...  

The Nuclotron at the Joint Institute for Nuclear Research in Dubna can deliver gold beams with kinetic energies between 2 and 4.5 A GeV. In heavy-ion collisions at these energies, it is expected that the nuclear fireball will be compressed by up to approximately four times the saturation density. This offers the opportunity to study the high-density equation-of-state (EOS) of nuclear matter in the laboratory, which is needed for our understanding of the structure of neutron stars and the dynamics of neutron star mergers. The Baryonic Matter at the Nuclotron (BM@N) experiment will be upgraded to perform multi-differential measurements of hadrons including (multi-) strange hyperons, which are promising probes of the high-density EOS, and of new phases of quantum chromodynamic (QCD) matter. The layout of the upgraded BM@N experiment and the results of feasibility studies are presented.


2020 ◽  
Vol 29 (07) ◽  
pp. 2030007
Author(s):  
Myungkuk Kim ◽  
Chang-Hwan Lee ◽  
Young-Min Kim ◽  
Kyujin Kwak ◽  
Yeunhwan Lim ◽  
...  

This paper reviews the properties of neutron stars based on the recent multi-messenger observations including electromagnetic waves from the low-mass X-ray binaries and gravitational waves from the merger of neutron star binaries. Based on these observations, we investigate theoretical models for dense nuclear matter and discuss their implications to the neutron star observations such as mass, radius, cooling, and tidal deformability. We also discuss the uncertainties in the neutron star cooling, neutron star properties with Bayesian approaches, and an expansion scheme applied to the nuclear energy density functional theory.


2011 ◽  
Vol 20 (supp01) ◽  
pp. 214-222
Author(s):  
HUGO PÉREZ ROJAS ◽  
AURORA PÉREZ MARTÍNEZ ◽  
ALEXANDRE MESQUITA ◽  
MOISÉS RAZEIRA ◽  
ROSANA O. GOMES ◽  
...  

By considering the expression for the total neutrino luminosity, Lν, in terms of the neutrino total emissivity and the volume of a neutron star, we confirm that indeed the luminosity for the direct URCA processes has a dependence on temperature of order T6 as assumed by Heinke and Ho. However, as can be seen in our formulation, Lν depends also on a variety of ingredients that characterize properties of dense nuclear matter as baryon effective masses, Fermi momenta and energy, as well as parameters that characterize the weak interaction beta process. In particular, the dependence of the luminosity of neutrinos in the effective mass of baryons that make up a neutron star opens a new perspective on the study of properties of dense nuclear matter. The model adopted in our calculations may represent, we believe, a further step in elucidating the mysteries surrounding the cooling of Cassiopeia A. Work along this line is in progress


Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 153 ◽  
Author(s):  
Péter Pósfay ◽  
Gergely Gábor Barnaföldi ◽  
Antal Jakovác

Recent multi-channel astrophysics observations and the soon-to-be published new measured electromagnetic and gravitation data provide information on the inner structure of the compact stars. These macroscopic observations can significantly increase our knowledge on the neutron star enteriors, providing constraints on the microscopic physical properties. On the other hand, due to the masquarade problem, there are still uncertainties on the various nuclear-matter models and their parameters as well. Calculating the properties of the dense nuclear matter, effective field theories are the most widely-used tools. However, the values of the microscopical parameters need to be set consistently to the nuclear and astrophysical measurements. In this work, we investigate how uncertainties are induced by the variation of the microscopical parameters. We use a symmetric nuclear matter in an extended σ - ω model to see the influence of the nuclear matter parameters. We calculate the dense matter equation of state and give the mass-radius diagram for a simplistic neutron star model. We present that the Landau mass and compressibility modulus of the nuclear matter have definite linear relation to the maximum mass of a Schwarzschild neutron star.


Sign in / Sign up

Export Citation Format

Share Document