scholarly journals Biomolecular Investigation of Bartonella spp. in Wild Rodents of Two Swiss Regions

Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1331
Author(s):  
Sara Divari ◽  
Marta Danelli ◽  
Paola Pregel ◽  
Giovanni Ghielmetti ◽  
Nicole Borel ◽  
...  

Rodents represent a natural reservoir of several Bartonella species, including zoonotic ones. In this study, small wild rodents, collected from two sites in rural areas of Switzerland, were screened for Bartonella spp. using molecular detection methods. In brief, 346 rodents were trapped in two rural sites in the Gantrisch Nature Park of Switzerland (Plasselb, canton of Fribourg, and Riggisberg, canton of Bern). Pools of DNA originating from three animals were tested through a qPCR screening and an end-point PCR, amplifying the 16S-23S rRNA gene intergenic transcribed spacer region and citrate synthase (gltA) loci, respectively. Subsequently, DNA was extracted from spleen samples belonging to single animals of gltA positive pools, and gltA and RNA polymerase subunit beta (rpoB) were detected by end-point PCR. Based on PCR results and sequencing, the prevalence of infection with Bartonella spp. in captured rodents, was 21.10% (73/346): 31.78% in Apodemus sp. (41/129), 10.47% in Arvicola scherman (9/86), 17.05% in Myodes glareolus (22/129), and 50% in Microtus agrestis (1/2). A significant association was observed between Bartonella spp. infection and rodent species (p < 0.01) and between trapping regions and positivity to Bartonella spp. infection (p < 0.001). Similarly, prevalence of Bartonella DNA was higher (p < 0.001) in rodents trapped in woodland areas (66/257, 25.68%) compared to those captured in open fields (9/89, 10.11%). Sequencing and phylogenetic analysis demonstrated that the extracted Bartonella DNA belonged mainly to B. taylorii and also to Candidatus “Bartonella rudakovii”, B. grahamii, B. doshiae, and B. birtlesii. In conclusion, the present study could rise public health issues regarding Bartonella infection in rodents in Switzerland.

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2070
Author(s):  
Sara Divari ◽  
Paola Pregel ◽  
Stefania Zanet ◽  
Ezio Ferroglio ◽  
Francesca Giannini ◽  
...  

Wild rodents are reservoirs of several Bartonella species that cause human bartonellosis. The aim of this study was to assess the presence of Bartonella spp. DNA in wild rodents in Pianosa island, Italy. Rats (Rattus spp.; n = 15) and field mice (Apodemus spp.; n = 16) were captured and spleen DNA tested for the presence of Bartonella spp. by means of an initial screening using a qPCR amplifying a short segment of the 16S-23S rRNA gene intergenic transcribed spacer region (ITS, ~200 bp) followed by conventional PCR amplification of a longer ITS fragment (~600 bp) and of a citrate synthase (gltA, ~340 bp) gene segment. A total of 25 spleen DNA samples obtained from 31 rodent carcasses (81%) yielded positive qPCR results. Bartonella genus was confirmed by amplicon sequencing. By conventional PCR, eight out of 25 samples (32%) yielded bands on gels consistent with ITS segment, and 6/25 (24%) yielded bands consistent with the gltA locus. Amplicon sequencing identified B. henselae and B. coopersplainsensis in 1/25 (4%), and 4/25 (16%) samples, respectively. Moreover, 5/25 (20%) of Bartonella spp. positive samples showed gltA sequences with about 97% identity to B. grahamii. These results provide support to recently published observations suggesting that B. henselae circulates in wild rodent populations.


Author(s):  
J G E Laumen ◽  
S S Manoharan-Basil ◽  
E Verhoeven ◽  
S Abdellati ◽  
I De Baetselier ◽  
...  

Abstract Background The prevalence of azithromycin resistance in Neisseria gonorrhoeae is increasing in numerous populations worldwide. Objectives To characterize the genetic pathways leading to high-level azithromycin resistance. Methods A customized morbidostat was used to subject two N. gonorrhoeae reference strains (WHO-F and WHO-X) to dynamically sustained azithromycin pressure. We tracked stepwise evolution of resistance by whole genome sequencing. Results Within 26 days, all cultures evolved high-level azithromycin resistance. Typically, the first step towards resistance was found in transitory mutations in genes rplD, rplV and rpmH (encoding the ribosomal proteins L4, L22 and L34 respectively), followed by mutations in the MtrCDE-encoded efflux pump and the 23S rRNA gene. Low- to high-level resistance was associated with mutations in the ribosomal proteins and MtrCDE efflux pump. However, high-level resistance was consistently associated with mutations in the 23S ribosomal RNA, mainly the well-known A2059G and C2611T mutations, but also at position A2058G. Conclusions This study enabled us to track previously reported mutations and identify novel mutations in ribosomal proteins (L4, L22 and L34) that may play a role in the genesis of azithromycin resistance in N. gonorrhoeae.


Author(s):  
Konrad Egli ◽  
Anna Roditscheff ◽  
Ursula Flückiger ◽  
Martin Risch ◽  
Lorenz Risch ◽  
...  

Abstract Background The resistance of Neisseria gonorrhoeae to ceftriaxone is unusual in Switzerland. The underlying genotype responsible for resistance is suspected to be novel. Generally, resistance in Neisseria gonorrhoeae (Ng) involves a comprehensive set of genes with many different mutations leading to resistance to different β-lactams and fluoroquinolones. Case presentation A patient had a positive result from specific PCR for Ng. We routinely culture all clinical specimens with a positive NG-PCR. In this particular case, we isolated a strain with resistance to ceftriaxone in Switzerland. A total of seven different genes (penA, ponA, porinB, mtr, gyrA, parC, 23S rRNA gene) in this strain were partially sequenced for comparison with phenotypic susceptibility testing. Interestingly, two different mutations in the porinB gene were observed, and data on this gene are limited. Information on the identified allele type of the penA gene is very limited as well. Three different mutations of parC and gyrA that correlate with ciprofloxacin resistance were found. The combination of ceftriaxone and ciprofloxacin resistance makes an appropriate treatment difficult to obtain due to multidrug resistance. Conclusion The combined results for all genes show the appearance of new mutations in central Europe either due to worldwide spread or the emergence of new genetic combinations of mutations.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Bai Wei ◽  
Min Kang

We investigated the molecular mechanisms underlying macrolide resistance in 38 strains ofCampylobacterisolated from poultry. Twenty-seven strains were resistant to azithromycin and erythromycin, five showed intermediate azithromycin resistance and erythromycin susceptibility, and six showed azithromycin resistance and erythromycin susceptibility. FourCampylobacter jejuniand sixCampylobacter colistrains had azithromycin MICs which were 8–16 and 2–8-fold greater than those of erythromycin, respectively. The A2075G mutation in the 23S rRNA gene was detected in 11 resistant strains with MICs ranging from 64 to ≥ 512μg/mL. Mutations including V137A, V137S, and a six-amino acid insertion (114-VAKKAP-115) in ribosomal protein L22 were detected in theC. jejunistrains. Erythromycin ribosome methylase B-erm(B) was not detected in any strain. All strains except three showed increased susceptibility to erythromycin with twofold to 256-fold MIC change in the presence of phenylalanine arginine ß-naphthylamide (PAßN); the effects of PAßN on azithromycin MICs were limited in comparison to those on erythromycin MICs, and 13 strains showed no azithromycin MIC change in the presence of PAßN. Differences between azithromycin and erythromycin resistance and macrolide resistance phenotypes and genotypes were observed even in highly resistant strains. Further studies are required to better understand macrolide resistance inCampylobacter.


2013 ◽  
Vol 76 (8) ◽  
pp. 1451-1455 ◽  
Author(s):  
KINGA WIECZOREK ◽  
IWONA KANIA ◽  
JACEK OSEK

The purpose of the present study was to determine the prevalence of Campylobacter in poultry carcasses at slaughter in Poland. For the isolated strains, resistance to selected antibiotics and the associated genetic determinants were identified. A total of 498 Campylobacter isolates were obtained from 802 poultry samples during the 2-year study period. Strains were identified to species with the PCR method; 53.6% of the strains were Campylobacter jejuni and 46.4% were Campylobacter coli. A high percentage of the tested Campylobacter strains were resistant to ciprofloxacin and nalidixic acid (74.1 and 73.5%, respectively) followed by tetracycline (47.4%) and streptomycin (20.5%). Only one C. jejuni and two C. coli isolates were resistant to gentamicin. Seventy-nine (15.9%) of the 498 strains were resistant to three or more classes of antibiotics examined. Higher levels of resistance, irrespective of the antimicrobial agent tested, were found within the C. coli group. Almost all strains resistant to quinolones (99.5%) and to tetracycline (99.6%) carried the Thr-86-to-Ile mutation in the gyrA gene and possessed the tet(O) marker, respectively. All isolates resistant to erythromycin had the A2075G mutation in the 23S rRNA gene. These results reveal that poultry carcasses in Poland are a reservoir of potentially pathogenic and antimicrobial-resistant Campylobacter strains for humans, which may pose a public health risk.


Helicobacter ◽  
1996 ◽  
Vol 1 (4) ◽  
pp. 227-228 ◽  
Author(s):  
Gregory G. Stone ◽  
Dee Shortridge ◽  
Robert K. Flamm ◽  
James Versalovic ◽  
Jill Beyer ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 377 ◽  
Author(s):  
Giovanni Cilia ◽  
Fabrizio Bertelloni ◽  
Marta Angelini ◽  
Domenico Cerri ◽  
Filippo Fratini

Leptospirosis is a re-emerging, worldwide zoonosis, and wild boar (Sus scrofa) are involved in its epidemiology as the reservoir. The aim of this study was to investigate the prevalence of Leptospira with serological, bacteriological, and molecular assays in wild boar hunted in Tuscany (Italy) during two hunting seasons. In total, 287 specimens of sera, kidneys, and liver were collected to perform microscopic agglutination tests (MATs), isolation, and RealTime PCR to detect pathogenic (lipL32 gene), intermediate (16S rRNA gene), and saprophytic (23S rRNA gene) Leptospira. Within sera, 39 (13.59%) were positive to the MAT, and Australis was the most represented serogroup (4.88%), followed by Pomona (4.18%), and Tarassovi (3.14%). Moreover, four Leptospira cultures were positive, and once isolates were identified, one was identified as L. borgpetersenii serovar Tarassovi, and three as L. interrogans serovar Bratislava. Pathogenic Leptospira DNA were detected in 32 wild boar kidneys (11.15%). The characterization through the amplification of the rrs2 gene highlighted their belonging to L. interrogans (23 kidneys), L. borgpetersenii (four), and L. kirschneri (one), while nine kidneys (3.14%) were positive for intermediate Leptospira, all belonging to L. fainei. The results of this study confirmed the importance of wild boar in the epidemiology of leptospirosis among wildlife in Central Italy.


2014 ◽  
Vol 37 (3) ◽  
pp. 229-234 ◽  
Author(s):  
Suvidha Samant ◽  
Rudolf I. Amann ◽  
Dittmar Hahn
Keyword(s):  
23S Rrna ◽  

Sign in / Sign up

Export Citation Format

Share Document