allele type
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Konrad Egli ◽  
Anna Roditscheff ◽  
Ursula Flückiger ◽  
Martin Risch ◽  
Lorenz Risch ◽  
...  

Abstract Background The resistance of Neisseria gonorrhoeae to ceftriaxone is unusual in Switzerland. The underlying genotype responsible for resistance is suspected to be novel. Generally, resistance in Neisseria gonorrhoeae (Ng) involves a comprehensive set of genes with many different mutations leading to resistance to different β-lactams and fluoroquinolones. Case presentation A patient had a positive result from specific PCR for Ng. We routinely culture all clinical specimens with a positive NG-PCR. In this particular case, we isolated a strain with resistance to ceftriaxone in Switzerland. A total of seven different genes (penA, ponA, porinB, mtr, gyrA, parC, 23S rRNA gene) in this strain were partially sequenced for comparison with phenotypic susceptibility testing. Interestingly, two different mutations in the porinB gene were observed, and data on this gene are limited. Information on the identified allele type of the penA gene is very limited as well. Three different mutations of parC and gyrA that correlate with ciprofloxacin resistance were found. The combination of ceftriaxone and ciprofloxacin resistance makes an appropriate treatment difficult to obtain due to multidrug resistance. Conclusion The combined results for all genes show the appearance of new mutations in central Europe either due to worldwide spread or the emergence of new genetic combinations of mutations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Knut Hestad ◽  
Knut Engedal ◽  
Peter Horndalsveen ◽  
Bjørn Heine Strand

The aim of this study was to investigate whether cognitive performance was equally influenced by Apolipoprotein E (APOE, with its three alleles, e2, e3, and e4) in patients with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer’s disease (AD). In addition, we examined a group of patients with a combination of Vascular dementia (VaD) and AD (VaD/AD). We asked if the APOE e4 allele influenced cognition in these patient groups in the same way. Our study comprised data from 1,991 patients (55% women), with a mean age of 70.9 years (SD 10.8) and 12.1 years of education (SD 3.8). Of them, 1,111 (56%) had at least one APOE e4 allele; 871 (44%) had one and 240 (12%) had two e4 alleles. Three neurocognitive tests were used to measure cognition: the Mini Mental State Examination (MMSE), the 10-word test of the Consortium to Establish a Registry for Alzheimer’s Disease Word List (CERAD-WL) (immediate and delayed recall), and the Trail Making Test Part A (TMTA). The APOE genotypes were regressed against cognitive function using linear regression, adjusting for diagnosis, age, sex, and education. The interaction diagnosis∗APOE was investigated. The allele type had the largest effect on cognitive performance assessed by the CERAD-WL delayed recall test, less for the other tests. Those without the e4 type scored 0.7 units better than those with e4 allele(s) (p < 0.001). Furthermore, there was a significant inverse dose-response pattern between number of e4 alleles and cognitive performance; those with one allele scored 0.4 units better than those with two alleles (p = 0.006), and those without e4 scored 0.7 units better than those with one e4 (p < 0.001). This pattern did not differ between the four diagnostic groups studied.


2020 ◽  
Author(s):  
Konrad Egli ◽  
Anna Roditscheff ◽  
Ursula Flückiger ◽  
Martin Risch ◽  
Lorenz Risch ◽  
...  

Abstract Background: Resistance of Neisseria gonorrhoeae to ceftriaxone is very rare in Switzerland. The underlying genotype is suspected to be novel. Generally, resistance in Neisseria gonorrhoeae (Ng) involves a comprehensive set of genes with many different mutations causing resistance to different β-lactams and fluoroquinolones.Case presentation: A patient had a positive result with specific PCR for Ng. We routinely start culturing for all clinical specimens with a positive result with NG-PCR. In this particular case, we isolated such a strain with resistance to ceftriaxone in Switzerland. A total of 7 different genes in this strain were partially sequenced for comparison with phenotypic susceptibility testing. Interestingly, two different mutations in the porinB gene were observed, and data on this gene are limited. Information on the identified allele type of the penA gene is very limited as well. Three different mutations of parC and gyrA that correlate with ciprofloxacin resistance were found.Conclusion: The combined results for all genes show the appearance of new mutations in central Europe either due to worldwide spread or the emergence of new genetic combinations.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 941
Author(s):  
Ilya Kandinov ◽  
Ekaterina Dementieva ◽  
Dmitry Kravtsov ◽  
Alexander Chestkov ◽  
Alexey Kubanov ◽  
...  

This work aimed to study penA gene polymorphisms in clinical isolates of Neisseria gonorrhoeae collected in Russia in 2018–2019 and the contribution of the penA allele type to susceptibility to β-lactam antibiotics. A total of 182 isolates were analyzed. penA allele types were determined by sequencing, and the minimum inhibitory concentrations (MICs) of benzylpenicillin and ceftriaxone were measured. The influence of genetic factors on MICs was evaluated by regression analysis. All isolates were susceptible to ceftriaxone, and 40.1% of isolates were susceptible to penicillin. Eleven penA allele types were identified. The mosaic type XXXIV penA allele and the Gly120Lys substitution in PorB made the greatest contributions to increasing the ceftriaxone MIC; the presence of the blaTEM plasmid, Gly120Asp, Ala121Gly/Asn substitutions in PorB, and the adenine deletion in the promoter region of the mtrR gene caused an increase in the penicillin MIC. Among 61 NG-MAST types identified, the most frequent were types 228, 807, 9486, 1993, and 6226. A link between penA alleles and Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST) types was established. Resistance to two groups of β-lactam antibiotics was associated with non-identical changes in penA alleles. To prevent the emergence of ceftriaxone resistance in Russia, NG-MAST genotyping must be supplemented with penA allele analysis.


Author(s):  
Akiko Ohwaki ◽  
Haruki Nishizawa ◽  
Asuka Kato ◽  
Takema Kato ◽  
Jun Miyazaki ◽  
...  

Background: Soluble fms-like tyrosine kinase 1 (sFlt-1) is believed to be a prominent component in the pathogenesis of pre-eclampsia, although the precise etiology has remained elusive. In this study, the etiological role of FLT1 variant was further validated in pre-eclampsia by examining this association in a Japanese sample population. Methods: The genotypes of three variants (rs4769613, rs12050029 and rs149427560) were examined in the upstream region of the FLT1 gene in placentas from pre-eclamptic (n=47) or normotensive control (n=49) pregnancy samples. Additionally, FLT1 mRNA levels in placenta were determined by qRT-PCR. ELISA was further used to detect circulating sFlt-1 levels in maternal sera. The intergroup comparisons were made using the Mann-Whitney U test or one way analysis of variance and P values of less than 0.05 were considered statistically significant. Results: First, the rs4769613 (C>T) and rs12050029 (G>A) genotypes were examined in placentas but no significant differences were found in the genotype or allele-type frequencies. Next, nearby short tandem repeat, rs149427560, was examined which manifested four size variants. In the genotypewise analysis, the frequency of the 474/476 heterozygote was significantly lower in pre-eclampsia (p<0.05). As expected, the FLT1 mRNA levels were significantly elevated in the pre-eclamptic placentas and sFlt-1 was higher in pre-eclamptic maternal sera. However, the genotype of these variants did not affect the FLT1 mRNA or serum sFlt-1 levels. Conclusion: Our findings did not support the hypothesis that genetic variations around the FLT1 gene affect the subtle expression changes underlying the etiologic pathway of pre-eclampsia. The hypothesis deserves further investigation through a larger sample size.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Segun Isaac Oyedeji ◽  
Peter Usman Bassi ◽  
Samuel Adeola Oyedeji ◽  
Olusola Ojurongbe ◽  
Henrietta Oluwatoyin Awobode

Abstract Background Plasmodium falciparum parasites are known to exhibit extensive genetic diversity in areas of high transmission intensity and infected individuals in such communities often harbour several complex mixtures of parasite clones with different genetic characteristics. However, in the micro-environment, the extent of genetic diversity of P. falciparum parasites remain largely unknown. In this study therefore, the complexity of P. falciparum infections in households was investigated among symptomatic siblings, living under the same roof in north-central Nigeria. Methods Children were enrolled into the study if they were at least two from a household and presented with symptoms of uncomplicated malaria. Clinical malaria was confirmed by light microscopy of Giemsa-stained thick and thin blood films. Genomic DNA was isolated from blood spots on filter paper. Molecular characterization of P. falciparum isolates was done by allele-specific nested PCR of the highly polymorphic merozoite surface protein-2 (msp-2) gene. Results Ninety-three children from 43 households were enrolled into this study. A total of 26 different msp-2 alleles were identified from 215 fragments (range: 180–480 bp). Majority of the isolates [65.6% (n = 61)] were polyclonal infections consisting of 2–6 clones and were significantly more common with the FC27 allelic family (p = 0.036). The multiplicity of infection (MOI) per household ranged from 1.0 to 4.5 while the overall MOI in the study population was 2.31. The pattern of distribution of msp-2 allele types among the households fell into two categories: households where both msp-2 allele types (FC27 and 3D7) were present; households where only one msp-2 allele type (FC27 or 3D7) was present. Majority of the households [88.4% (n = 38)], had both msp-2 allele types but they were disproportionately distributed among the children while in a few households [11.6% (n = 5)], all the children were infected with only one type of msp-2 allele. Conclusion These findings showed that P. falciparum isolates exhibit remarkable degree of genetic diversity in the micro-environment and are composed mainly of multiclonal infections, which is an indication of a high ongoing parasite transmission. This suggests that the micro-environment is an important area of focus for malaria control interventions and for evaluating intervention programmes.


2020 ◽  
Author(s):  
Segun Isaac Oyedeji ◽  
Peter Usman Bassi ◽  
Samuel Adeola Oyedeji ◽  
Olusola Ojurongbe ◽  
Henrietta Oluwatoyin Awobode

Abstract Background Plasmodium falciparum parasites are known to exhibit extensive genetic diversity in areas of high transmission intensity and infected individuals in such communities often harbour several complex mixtures of parasite clones with different genetic characteristics. However, in the micro-environment, the extent of genetic diversity of P. falciparum parasites remain largely unknown. In this study therefore, the complexity of P. falciparum infections in households was investigated among symptomatic siblings, living under the same roof in north-central Nigeria.Methods Children were enrolled into the study if they were at least two from a household and presented with symptoms of uncomplicated malaria. Clinical malaria was confirmed by light microscopy of Giemsa-stained thick and thin blood films. Genomic DNA was isolated from blood spots on filter paper. Molecular characterization of P. falciparum isolates was done by allele-specific nested PCR of the highly polymorphic merozoite surface protein-2 (msp-2) gene.Results Ninety-three children from 43 households were enrolled into this study. A total of 26 different msp-2 alleles were identified from 215 fragments (range: 180-480 bp). Majority of the isolates (65.6% (n=61)) were polyclonal infections consisting of 2-6 clones and were significantly more common with the FC27 allelic family (p = 0.036). The multiplicity of infection (MOI) per household ranged from 1.0 to 4.5 while the overall MOI in the study population was 2.31. The pattern of distribution of msp-2 allele types among the households fell into two categories: households where both msp-2 allele types (FC27 and 3D7) were present; households where only one msp-2 allele type (FC27 or 3D7) was present. Majority of the households (88.4% (n=38)), had both msp-2 allele types but they were disproportionately distributed among the children while in a few households (11.6% (n=5)), all the children were infected with only one type of msp-2 allele.Conclusion These findings showed that P. falciparum isolates exhibit remarkable degree of genetic diversity in the micro-environment and are composed mainly of multiclonal infections, which is an indication of a high ongoing parasite transmission. This suggests that the micro-environment is an important area of focus for malaria control interventions and for evaluating intervention programmes.


PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0231434 ◽  
Author(s):  
Lubembe D. Mukolwe ◽  
David O. Odongo ◽  
Charles Byaruhanga ◽  
Louwtjie P. Snyman ◽  
Kgomotso P. Sibeko-Matjila

2020 ◽  
Author(s):  
Segun Isaac Oyedeji ◽  
Peter Usman Bassi ◽  
Samuel Adeola Oyedeji ◽  
Olusola Ojurongbe ◽  
Henrietta Oluwatoyin Awobode

Abstract Background: Plasmodium falciparum parasites are known to exhibit extensive genetic diversity in areas of high transmission intensity and infected individuals in such communities often harbour several complex mixture of parasite clones with different genetic characteristics. However, in the microenvironment, the extent of genetic diversity of the P. falciparum parasites remain largely unknown. In this study therefore, we investigated the complexity of P. falciparum infections in households, among symptomatic siblings living under the same roof in North-central Nigeria.Methods: Children were enrolled into the study if they were at least two from a household and presented with symptoms of uncomplicated malaria. Clinical malaria was confirmed by light microscopy of Giemsa stained thick and thin blood films. Genomic DNA was isolated from blood spots on filter paper. Molecular characterization of P. falciparum isolates was done by allele-specific nested PCR of the highly polymorphic merozoite surface protein-2 (MSP-2) gene.Results: 93 children from 43 households were enrolled into this study. A total of 26 different MSP-2 alleles were identified from 215 fragments (range: 180-480bp). Majority of the isolates [65.6% (n=61)] were polyclonal infections consisting of 2-6 clones and were significantly more common with the FC27 allelic family (p = 0.036). The multiplicity of infection (MOI) per household ranged from 1.0 to 4.5 while the overall MOI in the study population was 2.31. The pattern of distribution of MSP-2 allele types among the households fell into two categories: households where both MSP-2 allele types (FC27 and 3D7) were present; and households where only one MSP-2 allele type (FC27 or 3D7) was present. Majority of the households [88.4% (n=38)], had both MSP-2 allele types but they were disproportionately distributed among the children while in a few households [11.6% (n=5)], all the children were infected with only one type of MSP-2 allele.Conclusion: Our findings showed that P. falciparum isolates exhibit remarkable degree of genetic diversity in the microenvironment and are composed mainly of multiclonal infections, which is an indication of a high ongoing parasite transmission. This suggests that the microenvironment is an important area of focus for malaria control interventions and for evaluating intervention programmes.


2020 ◽  
Vol 8 (4) ◽  
pp. 494 ◽  
Author(s):  
Sarah K. Hewitt ◽  
Kobchai Duangrattanalert ◽  
Tim Burgis ◽  
Leo A.H. Zeef ◽  
Samina Naseeb ◽  
...  

Mitochondrial DNA (mtDNA) in yeast is biparentally inherited, but colonies rapidly lose one type of parental mtDNA, thus becoming homoplasmic. Therefore, hybrids between the yeast species possess two homologous nuclear genomes, but only one type of mitochondrial DNA. We hypothesise that the choice of mtDNA retention is influenced by its contribution to hybrid fitness in different environments, and the allelic expression of the two nuclear sub-genomes is affected by the presence of different mtDNAs in hybrids. Saccharomyces cerevisiae/S. uvarum hybrids preferentially retained S. uvarum mtDNA when formed on rich media at colder temperatures, while S. cerevisiae mtDNA was primarily retained on non-fermentable carbon source, at any temperature. Transcriptome data for hybrids harbouring different mtDNA showed a strong environmentally dependent allele preference, which was more important in respiratory conditions. Co-expression analysis for specific biological functions revealed a clear pattern of concerted allelic transcription within the same allele type, which supports the notion that the hybrid cell works preferentially with one set of parental alleles (or the other) for different cellular functions. Given that the type of mtDNA retained in hybrids affects both nuclear expression and fitness, it might play a role in driving hybrid genome evolution in terms of gene retention and loss.


Sign in / Sign up

Export Citation Format

Share Document