scholarly journals Colistin Resistance Onset Strategies and Genomic Mosaicism in Clinical Acinetobacter baumannii Lineages

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1516
Author(s):  
Viviana Cafiso ◽  
Stefano Stracquadanio ◽  
Veronica Dovere ◽  
Flavia Lo Verde ◽  
Alessandra Zega ◽  
...  

The treatment of multidrug-resistant Gram-negative infections is based on colistin. As result, COL-resistance (COL-R) can develop and spread. In Acinetobacter baumannii, a crucial step is to understand COL-R onset and stability, still far to be elucidated. COL-R phenotypic stability, onset modalities, and phylogenomics were investigated in a clinical A. baumannii sample showing a COL resistant (COLR) phenotype at first isolation. COL-R was confirmed by Minimum-Inhibitory-Concentrations as well as investigated by Resistance-Induction assays and Population-Analysis-Profiles (PAPs) to determine: (i) stability; (ii) inducibility; (iii) heteroresistance. Genomics was performed by Mi-Seq Whole-Genome-Sequencing, Phylogenesis, and Genomic Epidemiology by bioinformatics. COLRA. baumannii were subdivided as follows: (i) 3 A. baumannii with stable and high COL MICs defining the “homogeneous-resistant” onset phenotype; (ii) 6 A. baumannii with variable and lower COL MICs displaying a “COL-inducible” onset phenotype responsible for adaptive-resistance or a “subpopulation” onset phenotype responsible for COL-heteroresistance. COL-R stability and onset strategies were not uniquely linked to the amount of LPS and cell envelope charge. Phylogenomics categorized 3 lineages clustering stable and/or unstable COL-R phenotypes with increasing genomic complexity. Likewise, different nsSNP profiling in genes already associated with COL-R marked the stable and/or unstable COL-R phenotypes. Our investigation finds out that A. baumannii can range through unstable or stable COLR phenotypes emerging via different “onset strategies” within phylogenetic lineages displaying increasing genomic mosaicism.

2018 ◽  
Author(s):  
Yannick Charretier ◽  
Seydina M. Diene ◽  
Damien Baud ◽  
Sonia Chatellier ◽  
Emmanuelle Santiago-Allexant ◽  
...  

AbstractMultidrug-resistant Acinetobacter baumannii infection has recently emerged as a worldwide clinical problem and colistin is increasingly being used as last resort therapy. Despite its favorable bacterial killing, resistance and heteroresistance to colistin have been described. Mutations in the PmrAB regulatory pathway have been already associated with colistin resistance whereas the mechanisms for heteroresistance remain largely unknown. The purpose of the present study is to investigate the role of PmrAB in laboratory-selected mutants representative of global epidemic strains. During brief colistin exposure, colistin resistant and colistin heteroresistant mutants were selected in a one-step strategy. Population Analysis Profiling (PAP) was performed to confirm the suspected phenotype. Upon withdrawal of selective pressure, compensatory mutations were evaluated in another one-step strategy. A trans-complementation assay was designed to delineate the involvement of the PmrAB regulatory system using qPCR and PAP. Mutations in the PmrAB regulatory pathway were associated with colistin resistance and colistin heteroresistance as well. The transcomplementation assay provides a proof for the role played by changes in the PmrAB regulatory pathway. The level of colistin resistance is correlated to the level of expression of pmrC. The resistance phenotype was partially restored since the complemented strain became heteroresistant. This report shows the role of different mutations in the PmrAB regulatory pathway and warns on the development of colistin heteroresistance that could be present but not easily detected with routine testing.


2013 ◽  
Vol 57 (8) ◽  
pp. 3738-3745 ◽  
Author(s):  
Hee Ji Lee ◽  
Phillip J. Bergen ◽  
Jurgen B. Bulitta ◽  
Brian Tsuji ◽  
Alan Forrest ◽  
...  

ABSTRACTCombination therapy may be required for multidrug-resistant (MDR)Acinetobacter baumannii. This study systematically investigated bacterial killing and emergence of colistin resistance with colistin and rifampin combinations against MDRA. baumannii. Studies were conducted over 72 h in anin vitropharmacokinetic (PK)/pharmacodynamic (PD) model at inocula of ∼106and ∼108CFU/ml using two MDR clinical isolates ofA. baumannii, FADDI-AB030 (colistin susceptible) and FADDI-AB156 (colistin resistant). Three combination regimens achieving clinically relevant concentrations (constant colistin concentration of 0.5, 2, or 5 mg/liter and a rifampin maximum concentration [Cmax] of 5 mg/liter every 24 hours; half-life, 3 h) were investigated. Microbiological response was measured by serial bacterial counts. Population analysis profiles assessed emergence of colistin resistance. Against both isolates, combinations resulted in substantially greater killing at the low inoculum; combinations containing 2 and 5 mg/liter colistin increased killing at the high inoculum. Combinations were additive or synergistic at 6, 24, 48, and 72 h with all colistin concentrations against FADDI-AB030 and FADDI-AB156 in, respectively, 8 and 11 of 12 cases (i.e., all 3 combinations) at the 106-CFU/ml inoculum and 8 and 7 of 8 cases with the 2- and 5-mg/liter colistin regimens at the 108-CFU/ml inoculum. For FADDI-AB156, killing by the combination was ∼2.5 to 7.5 and ∼2.5 to 5 log10CFU/ml greater at the low inoculum (all colistin concentrations) and high inoculum (2 and 5 mg/liter colistin), respectively. Emergence of colistin-resistant subpopulations was completely suppressed in the colistin-susceptible isolate with all combinations at both inocula. Our study provides important information for optimizing colistin-rifampin combinations against colistin-susceptible and -resistant MDRA. baumannii.


2012 ◽  
Vol 56 (9) ◽  
pp. 4856-4861 ◽  
Author(s):  
Céline Vidaillac ◽  
Lothaire Benichou ◽  
Raphaël E. Duval

ABSTRACTColistin resistance, although uncommon, is increasingly being reported among Gram-negative clinical pathogens, and an understanding of its impact on the activity of antimicrobials is now evolving. We evaluated the potential for synergy of colistin plus trimethoprim, trimethoprim-sulfamethoxazole (1/19 ratio), or vancomycin against 12 isolates ofAcinetobacter baumannii(n= 4),Pseudomonas aeruginosa(n= 4), andKlebsiella pneumoniae(n= 4). The strains included six multidrug-resistant clinical isolates,K. pneumoniaeATCC 700603,A. baumanniiATCC 19606,P. aeruginosaATCC 27853, and their colistin-resistant derivatives (KPm1, ABm1, and PAm1, respectively). Antimicrobial susceptibilities were assessed by broth microdilution and population analysis profiles. The potential for synergy of colistin combinations was evaluated using a checkerboard assay, as well as static time-kill experiments at 0.5× and 0.25× MIC. The MIC ranges of vancomycin, trimethoprim, and trimethoprim-sulfamethoxazole (1/19) were ≥128, 4 to ≥128, and 2/38 to >128/2,432 μg/ml, respectively. Colistin resistance demonstrated little impact on vancomycin, trimethoprim, or trimethoprim-sulfamethoxazole MIC values. Isolates with subpopulations heterogeneously resistant to colistin were observed to various degrees in all tested isolates. In time-kill assays, all tested combinations were synergistic against KPm1 at 0.25× MIC and 0.5× MIC and ABm1 and PAm1 at 0.5× MIC. In contrast, none of the tested combinations demonstrated synergy against any colistin-susceptibleP. aeruginosaisolates and clinical strains ofK. pneumoniaeisolates. Only colistin plus trimethoprim or trimethoprim-sulfamethoxazole was synergistic and bactericidal at 0.5× MIC againstK. pneumoniaeATCC 700603. Colistin resistance seems to promote thein vitroactivity of unconventional colistin combinations. Additional experiments are warranted to understand the clinical significance of these observations.


2021 ◽  
Author(s):  
Liping Li ◽  
Francesca Short ◽  
Karl Hassan ◽  
Varsha Naidu ◽  
Alaska Pokhrel ◽  
...  

Abstract Biocides, such as antiseptics and disinfectants, are used ubiquitously for hygiene in households and for life-saving infection control in hospitals. An increasing concern is that the widespread use of biocides may contribute to the emergence and spread of multidrug-resistant bacteria. We performed transposon directed insertion site sequencing (TraDIS) to identify genes and key cellular pathways of the multidrug resistant nosocomial pathogen Acinetobacter baumannii, that affect host fitness during exposure to a panel of ten structurally-diverse and clinically-relevant biocides: silver nitrate, benzalkonium, cetyltrimethylammonium bromide (CTAB), chlorhexidine, triclosan, chloroxylenol, polyvidone iodine, bleach, glutaraldehyde and ethanol. Multiple genes encoding proteins localised either in the cell envelope or in the cytoplasm were shown to affect biocide susceptibility. These proteins are involved in multiple processes including fatty acid biogenesis, multidrug efflux, the tricarboxylic acid cycle, cell respiration and cell division, suggesting that these biocides may have intracellular targets in addition to their known effects on the cell envelope. Based on the importance of cell respiration genes for A. baumannii fitness on biocides, we proposed and confirmed that apart from triclosan, the other 9 biocides at sub-inhibitory concentration can dissipate the membrane potential and lead to A. baumannii tolerance to antibiotics that have intracellular targets. Our results support the concern that residual biocides in clinical or community environments can promote the development of antibiotic resistance in pathogenic bacteria.


2020 ◽  
Vol 67 (3) ◽  
pp. 176-181
Author(s):  
Ina Gajic ◽  
Lazar Ranin ◽  
Dusan Kekic ◽  
Natasa Opavski ◽  
Aleksandra Smitran ◽  
...  

AbstractTigecycline can be effective to treat infections of carbapenem-resistant Acinetobacter baumannii (CRAB) however, no interpretive criteria have been approved so far. The objectives of this study were to evaluate the proportion of CRAB isolates and to compare gradient test with a broth microdilution (BMD) method for tigecycline susceptibility testing of A. baumannii.This study included 349 multidrug-resistant (MDR) Acinetobacter spp. collected from Serbia, Montenegro, Bosnia and Herzegovina in 2016 and 2017. Antibiotic susceptibility testing was performed by disk diffusion, VITEK2, gradient, ComASP Colistin. Tigecycline susceptibilities were interpreted according to breakpoints of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Food and Drug Administration (FDA).Majority of the tested isolates were CRAB (92.8%). Tigecycline MIC50/MIC90 values were 4/8 μg/mL by BMD and 0.5/4 μg/mL by gradient test. Essential agreement for BMD and gradient test amounted to 65.1%. With EUCAST breakpoints, categorical agreement (CA) was achieved in 38% isolates. Major discordance (MD-false susceptibility/resistance) and minor discordance (mD-false categorization involving intermediate results) were observed in 10% and 57% A. baumannii, respectively. With FDA breakpoints, CA, MD and mD were observed in 44%, 16% and 47% isolates, respectively. Colistin resistance was 2.1%.The study highlights a high proportion of CRAB and several discordances between BMD and gradient test which may lead to inappropriate therapy.


2014 ◽  
Vol 58 (5) ◽  
pp. 2972-2975 ◽  
Author(s):  
M. Garcia-Quintanilla ◽  
M. R. Pulido ◽  
P. Moreno-Martinez ◽  
R. Martin-Pena ◽  
R. Lopez-Rojas ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Matteo Cervoni ◽  
Alessandra Lo Sciuto ◽  
Chiara Bianchini ◽  
Carmine Mancone ◽  
Francesco Imperi

Colistin represents a last-line treatment option for infections caused by multidrug resistant Gram-negative pathogens, including Pseudomonas aeruginosa. Colistin resistance generally involves the modification of the lipid A moiety of lipopolysaccharide (LPS) with positively charged molecules, namely phosphoethanolamine (PEtN) or 4-amino-4-deoxy-L-arabinose (Ara4N), that reduce colistin affinity for its target. Several lines of evidence highlighted lipid A aminoarabinosylation as the primary colistin resistance mechanism in P. aeruginosa, while the contribution of phosphoethanolamination remains elusive. PEtN modification can be due to either endogenous (chromosomally encoded) PEtN transferase(s) (e.g., EptA in P. aeruginosa) or plasmid borne MCR enzymes, commonly found in enterobacteria. By individually cloning eptA and mcr-1 into a plasmid for inducible gene expression, we demonstrated that MCR-1 and EptA have comparable PEtN transferase activity in P. aeruginosa and confer colistin resistance levels similar to those provided by lipid A aminoarabinosylation. Notably, EptA, but not MCR-1, negatively affects P. aeruginosa growth and, to a lesser extent, cell envelope integrity when expressed at high levels. Mutagenesis experiments revealed that PEtN transferase activity does not account for the noxious effects of EptA overexpression, that instead requires a C-terminal tail unique to P. aeruginosa EptA, whose function remains unknown. Overall, this study shows that both endogenous and exogenous PEtN transferases can promote colistin resistance in P. aeruginosa, and that PEtN and MCR-1 mediated resistance has no impact on growth and cell envelope homeostasis, suggesting that there may be no fitness barriers to the spread of mcr-1 in P. aeruginosa.


2021 ◽  
Author(s):  
R. Christopher D. Furniss ◽  
Nikol Kaderabkova ◽  
Declan Barker ◽  
Patricia Bernal ◽  
Evgenia Maslova ◽  
...  

Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.


2018 ◽  
Vol 33 (5) ◽  
Author(s):  
Prasha Mahabeer ◽  
Bongani W. Mzimela ◽  
Melissa A. Lawler ◽  
Ashika Singh-Moodley ◽  
Radhika Singh ◽  
...  

Acinetobacter baumannii causes invasive paediatric infections, including bacteraemia and meningitis, but neonatal meningitis and ventriculitis is uncommon. The treatment of multidrug resistant (MDR) Acinetobacter infections often relies on colistin, a polymyxin antibiotic, as a last resort. Increased use of this drug has led to the emergence of colistin resistance. An unusual case of colistin-resistant Acinetobacter baumannii ventriculitis in a premature neonate managed with intraventricular colistin is described.


Author(s):  
Amin Khoshbayan ◽  
Aref Shariati ◽  
Samane Shahmoradi ◽  
Zohre Baseri ◽  
Haniyeh Mozafari ◽  
...  

AbstractColistin is one of the last remaining active antibiotics against multidrug resistant Gram-negative bacteria. However, several recent studies reported colistin-resistant (ColR) Acinetobacter baumannii from different countries. In the current study, we investigated molecular mechanisms involved in colistin resistance in A. baumannii isolates from different clinical samples.A total of 110 clinical A. baumannii isolates were collected from two hospitals in Tehran. Minimum inhibitory concentrations (MICs) were determined by broth microdilution according to the Clinical and Laboratory Standards Institute. For the ColR isolates, mutation was detected in pmrA, pmrB, lpxA, lpxC, and lpxD genes using the polymerase chain reaction (PCR) and sequencing. Moreover, the relative expression of the pmrC gene was calculated using quantitative reverse transcription PCR. Three colistin resistant isolates were identified with MIC between 8 and 16 μg/mL and were resistant to all the tested antimicrobial agents. All the three isolates had a mutation in the pmrB, pmrA, lpxA, lpxD, and lpxC genes. Moreover, the overexpression of pmrC gene was observed in all isolates. Our results showed that the upregulation of the PmrAB two component system was the primary mechanism linked to colistin resistance among the studied colistin resistant A. baumannii isolates.


Sign in / Sign up

Export Citation Format

Share Document