scholarly journals The Role of Cytoplasmic mRNA Cap-Binding Protein Complexes in Trypanosoma brucei and Other Trypanosomatids

Pathogens ◽  
2017 ◽  
Vol 6 (4) ◽  
pp. 55 ◽  
Author(s):  
Eden Freire ◽  
Nancy Sturm ◽  
David Campbell ◽  
Osvaldo de Melo Neto
2019 ◽  
Author(s):  
Rudo Kieft ◽  
Yang Zhang ◽  
Alexandre P. Marand ◽  
Jose Dagoberto Moran ◽  
Robert Bridger ◽  
...  

AbstractBase J, β-D-glucosyl-hydroxymethyluracil, is a modification of thymine DNA base involved in RNA Polymerase (Pol) II transcription termination in kinetoplastid protozoa. Little is understood regarding how specific thymine residues are targeted for J-modification or the mechanism of J regulated transcription termination. To identify proteins involved in J-synthesis, we expressed a tagged version of the J-glucosyltransferase (JGT) in Leishmania tarentolae, and identified four co-purified proteins by mass spectrometry: protein phosphatase (PP1), a homolog of Wdr82, a potential PP1 regulatory protein (PNUTS) and a protein containing a J-DNA binding domain (named JBP3). Gel shift studies indicate JBP3 is a J-DNA binding protein. Reciprocal tagging, co-IP and sucrose gradient analyses indicate PP1, JGT, JBP3, Wdr82 and PNUTS form a multimeric complex in kinetoplastids, similar to the mammalian PTW/PP1 complex involved in transcription termination via PP1 mediated dephosphorylation of Pol II. Using RNAi and analysis of Pol II termination by RNA-seq and RT-PCR, we demonstrate that ablation of PNUTS, JBP3 and Wdr82 lead to defects in Pol II termination at the 3’-end of polycistronic gene arrays in Trypanosoma brucei. Mutants also contain increased antisense RNA levels upstream of promoters, suggesting an additional role of the complex in regulating termination of bi-directional transcription. In addition, PNUTS loss causes derepression of silent Variant Surface Glycoprotein genes important for host immune evasion. Our results provide the first direct mechanistic link between base J and regulation of Pol II termination and suggest a novel molecular model for the role of the CTD of Pol II in terminating polycistronic transcription in trypanosomatids.Author SummaryTrypanosoma brucei is an early-diverged parasitic protozoan that causes African sleeping sickness in humans. The genome of T. brucei is organized into polycistronic gene clusters that contain multiple genes that are co-transcribed from a single promoter. We have recently described the presence of a modified DNA base J and variant of histone H3 (H3.V) at transcription termination sites within gene clusters where the loss of base J and H3.V leads to read-through transcription and the expression of downstream genes. We now identify a novel stable multimeric complex containing a J binding protein (JBP3), base J glucosyltransferase (JGT), PP1 phosphatase, PP1 interactive-regulatory protein (PNUTS) and Wdr82, which we refer to as PJW/PP1. A similar complex (PTW/PP1) has been shown to be involved in Pol II termination in humans and yeast. We demonstrate that PNUTS, JBP3 and Wdr82 mutants lead to read-through transcription in T. brucei. Our data suggest the PJW/PP1 complex regulates termination by recruitment to termination sites via JBP3-base J interactions and dephosphorylation of specific proteins (including Pol II and termination factors) by PP1. These findings significantly expand our understanding of mechanisms underlying transcription termination in eukaryotes, including divergent organisms that utilize polycistronic transcription and novel epigenetic marks such as base J and H3.V. The studies also provide the first direct mechanistic link between J modification of DNA at termination sites and regulated Pol II termination and gene expression in kinetoplastids.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Diego Huet ◽  
Thierry Blisnick ◽  
Sylvie Perrot ◽  
Philippe Bastin

The construction of cilia and flagella depends on intraflagellar transport (IFT), the bidirectional movement of two protein complexes (IFT-A and IFT-B) driven by specific kinesin and dynein motors. IFT-B and kinesin are associated to anterograde transport whereas IFT-A and dynein participate to retrograde transport. Surprisingly, the small GTPase IFT27, a member of the IFT-B complex, turns out to be essential for retrograde cargo transport in Trypanosoma brucei. We reveal that this is due to failure to import both the IFT-A complex and the IFT dynein into the flagellar compartment. To get further molecular insight about the role of IFT27, GDP- or GTP-locked versions were expressed in presence or absence of endogenous IFT27. The GDP-locked version is unable to enter the flagellum and to interact with other IFT-B proteins and its sole expression prevents flagellum formation. These findings demonstrate that a GTPase-competent IFT27 is required for association to the IFT complex and that IFT27 plays a role in the cargo loading of the retrograde transport machinery.


1991 ◽  
Vol 275 (1) ◽  
pp. 259-262 ◽  
Author(s):  
M C Liu ◽  
R L Lu ◽  
J R Han ◽  
X B Tang ◽  
M Suiko ◽  
...  

Rabbit antiserum against electrophoretically purified bovine liver tyrosine-O-sulphate (TyrS)-binding protein was prepared. Affinity-purified antibodies from the antiserum were found to be capable of immunoprecipitating the TyrS-binding protein from the sodium choleate extract of a bovine liver microsomal membrane fraction. Using purified specific antibodies as the probe, Western blot analysis for the presence of TyrS-binding protein/tyrosine-sulphated protein complexes in bovine liver membrane lysates was performed. It was found that the TyrS-binding protein co-precipitated with three tyrosine-sulphated proteins (fibronectin, fibrinogen and complement C4) immunoprecipitated by their respective antibodies. In contrast, for the two non-tyrosine-sulphated proteins (haptoglobin and transferrin) tested, co-precipitation of the TyrS-binding protein was not observed. On employing an affinity gel fractionation technique, it was shown that partially purified TyrS-binding protein exhibited binding affinity towards Sepharose gels covalently bonded to fibronectin or fibrinogen, but not towards Sepharose gels bonded to albumin or transferrin. These results indicate that the TyrS-binding protein formed complexes with tyrosine-sulphated proteins both in vivo and in vitro, and thus provide support for the putative role of the former being the receptor of the latter.


2003 ◽  
Vol 375 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Florence GOUYON ◽  
Cercina ONESTO ◽  
Veronique DALET ◽  
Gilles PAGES ◽  
Armelle LETURQUE ◽  
...  

In intestinal cells, levels of the fructose transporter GLUT5 are increased by glucose and to a greater extent by fructose. We investigated the mechanism by which fructose increases GLUT5 expression. In Caco-2 cells, fructose and glucose increased activity of the −2500/+41 GLUT5 promoter to the same extent. cAMP also activated the GLUT5 promoter. However, if a protein kinase A inhibitor was used to block cAMP signalling, extensive GLUT5 mRNA degradation was observed, with no change in basal transcription levels demonstrating the involvement of cAMP in GLUT5 mRNA stability. Indeed, the half-life of GLUT5 mRNA was correlated (R2=0.9913) with cellular cAMP levels. Fructose increased cAMP concentration more than glucose, accounting for the stronger effect of fructose when compared with that of glucose on GLUT5 production. We identified several complexes between GLUT5 3′-UTR RNA (where UTR stands for untranslated region) and cytosolic proteins that might participate in mRNA processing. Strong binding of a 140 kDa complex I was observed in sugar-deprived cells, with levels of binding lower in the presence of fructose and glucose by factors of 12 and 6 respectively. This may account for differences in the effects of fructose and glucose. In contrast, the amounts of two complexes of 96 and 48 kDa increased equally after stimulation with either glucose or fructose. Finally, PABP (polyadenylated-binding protein)-interacting protein 2, a destabilizing partner of PABP, was identified as a component of GLUT5 3′-UTR RNA–protein complexes. We conclude that the post-transcriptional regulation of GLUT5 by fructose involves increases in mRNA stability mediated by the cAMP pathway and Paip2 (PABP-interacting protein 2) binding.


2020 ◽  
Author(s):  
Khan Umaer ◽  
James D. Bangs

ABSTRACTThe Endosomal Sorting Complex Required for Transport machinery consists of four protein complexes (ESCRT 0-IV) and the post ESCRT ATPase Vps4. ESCRT mediates cargo delivery for lysosomal degradation via formation of multivesicular bodies. Trypanosoma brucei contains orthologues of ESCRT I-III and Vps4. Trypanosomes also have a ubiquitinylated invariant surface glycoprotein (ISG65) that is delivered to the lysosome by ESCRT, however, we previously implicated TbVps4 in rescue and recycling of ISG65. Here we use conditional silencing to investigate the role of TbVps24, a phosphoinositide-binding ESCRT III component, on protein trafficking. TbVps24 localizes to the TbRab7+ late endosome, and binds PI(3,5)P2, the product of the TbFab1 kinase, both of which also localize to late endosomes. TbVps24 silencing is lethal, and negatively affects biosynthetic trafficking of the lysosomal markers p67 and TbCathepsin L. However, the major phenotype of silencing is accelerated degradation and depletion of the surface pool of ISG65. Thus, TbVps24 silencing phenocopies that of TbVps4 in regard to ISG65 trafficking. This presents a paradox since we have previously found that depletion of TbFab1 completely blocks ISG65 turnover. We propose a model in which late ESCRT components operate at two sites, one PI(3,5)P2-dependent (degradation) and one PI(3,5)P2-independent (recycling), to regulate ISG65 homeostasis.


2014 ◽  
Vol 226 (03) ◽  
Author(s):  
S Hutter ◽  
PA Northcott ◽  
M Kool ◽  
SM Pfister ◽  
D Kawauchi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document