scholarly journals FCoV Viral Sequences of Systemically Infected Healthy Cats Lack Gene Mutations Previously Linked to the Development of FIP

Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 603
Author(s):  
Mirjam Lutz ◽  
Aline R. Steiner ◽  
Valentino Cattori ◽  
Regina Hofmann-Lehmann ◽  
Hans Lutz ◽  
...  

Feline Infectious Peritonitis (FIP)—the deadliest infectious disease of young cats in shelters or catteries—is induced by highly virulent feline coronaviruses (FCoVs) emerging in infected hosts after mutations of less virulent FCoVs. Previous studies have shown that some mutations in the open reading frames (ORF) 3c and 7b and the spike (S) gene have implications for the development of FIP, but mainly indirectly, likely also due to their association with systemic spread. The aim of the present study was to determine whether FCoV detected in organs of experimentally FCoV infected healthy cats carry some of these mutations. Viral RNA isolated from different tissues of seven asymptomatic cats infected with the field strains FCoV Zu1 or FCoV Zu3 was sequenced. Deletions in the 3c gene and mutations in the 7b and S genes that have been shown to have implications for the development of FIP were not detected, suggesting that these are not essential for systemic viral dissemination. However, deletions and single nucleotide polymorphisms leading to truncations were detected in all nonstructural proteins. These were found across all analyzed ORFs, but with significantly higher frequency in ORF 7b than ORF 3a. Additionally, a previously unknown homologous recombination site was detected in FCoV Zu1.


2020 ◽  
Vol 47 (5) ◽  
pp. 425
Author(s):  
Mengyu Liu ◽  
Xiaofeng Liu ◽  
Junhua Hu ◽  
Yang Xue ◽  
Xiaochun Zhao

D-limonene is the main component of citrus essential oils. In the monoterpene biosynthetic pathway, geranyl diphosphate reacts with monoterpenes to form the prenyl-carbocation intermediate to produce d-limonene. In this study, d-limonene synthase (FcLS) genes were first isolated from Rongan kumquat (Fortunella crassifolia Swingle). Sequencing analysis revealed that the open reading frames of 18 FcLS genes contain 12 single nucleotide polymorphisms, which resulted in the variation of FcLS proteins, indicating that the limonene synthase genes are a large family in F. crassifolia. This phenomenon has not been reported in Citrus. The predicted FcLS proteins showed a high amino acid sequence identity with other Citrus limonene synthases and also had the typical structures of limonene synthase protein. FcLS1 was validated to be a functional d-limonene synthase by prokaryotic expression.



2015 ◽  
Author(s):  
Xiaoqiu Huang ◽  
Anindya Das ◽  
Binod B Sahu ◽  
Subodh K Srivastava ◽  
Leonor F Leandro ◽  
...  

Supernumerary chromosomes have been shown to transfer horizontally from one isolate to another. However, the mechanism by which horizontal chromosome transfer (HCT) occurs is unknown. In this study, we compared the genomes of 11 isolates comprising six Fusarium species that cause soybean sudden death syndrome (SDS) or bean root rot (BRR), and detected numerous instances of HCT in supernumerary chromosomes. We also identified a statistically significant number (21 standard deviations above the mean) of single nucleotide polymorphisms (SNPs) in the supernumerary chromosomes between isolates of the asexual pathogen F. virguliforme. Supernumerary chromosomes carried reverse transcriptase-related genes (RVT); the presence of long RVT open reading frames (ORFs) in the supernumerary chromosome was correlated with the presence of two or more chromosome copies with a significant number of SNPs between them. Our results suggest that supernumerary chromosomes transfer horizontally via an RNA intermediate. Understanding the mechanism by which HCT occurs will have a profound impact on understanding evolution and applying biotechnology as well as accepting HCT as a natural source of genetic variation.



2015 ◽  
Author(s):  
Xiaoqiu Huang ◽  
Anindya Das ◽  
Binod B Sahu ◽  
Subodh K Srivastava ◽  
Leonor F Leandro ◽  
...  

Supernumerary chromosomes have been shown to transfer horizontally from one isolate to another. However, the mechanism by which horizontal chromosome transfer (HCT) occurs is unknown. In this study, we compared the genomes of 11 isolates comprising six Fusarium species that cause soybean sudden death syndrome (SDS) or bean root rot (BRR), and detected numerous instances of HCT in supernumerary chromosomes. We also identified a statistically significant number (21 standard deviations above the mean) of single nucleotide polymorphisms (SNPs) in the supernumerary chromosomes between isolates of the asexual pathogen F. virguliforme. Supernumerary chromosomes carried reverse transcriptase-related genes (RVT); the presence of long RVT open reading frames (ORFs) in the supernumerary chromosome was correlated with the presence of two or more chromosome copies with a significant number of SNPs between them. Our results suggest that supernumerary chromosomes transfer horizontally via an RNA intermediate. Understanding the mechanism by which HCT occurs will have a profound impact on understanding evolution and applying biotechnology as well as accepting HCT as a natural source of genetic variation.



2012 ◽  
Vol 86 (18) ◽  
pp. 9558-9565 ◽  
Author(s):  
Charles Grose

The goal of this minireview is to provide an overview of varicella-zoster virus (VZV) phylogenetics and phylogeography when placed in the broad context of geologic time. Planet Earth was formed over 4 billion years ago, and the supercontinent Pangaea coalesced around 400 million years ago (mya). Based on detailed tree-building models, the base of the phylogenetic tree of theHerpesviridaefamily has been estimated at 400 mya. Subsequently, Pangaea split into Laurasia and Gondwanaland; in turn, Africa rifted from Gondwanaland. Based on available data, the hypothesis of this minireview is that the ancestral alphaherpesvirus VZV coevolved in simians, apes, and hominins in Africa. When anatomically modern humans first crossed over the Red Sea 60,000 years ago, VZV was carried along in their dorsal root ganglia. Currently, there are five VZV clades, distinguishable by single nucleotide polymorphisms. These clades likely represent continued VZV coevolution, as humans with latent VZV infection left Arabia and dispersed into Asia (clades 2 and 5) and Europe (clades 1, 3, and 4). The prototype VZV sequence contains nearly 125,000 bp, divided into 70 open reading frames. Generally, isolates within a clade display >99.9% identity to one another, while members of one clade compared to a second clade show 99.8% identity to one another. Recently, four different VZV genotypes that do not segregate into the previously defined five clades have been identified, a result indicating a wider than anticipated diversity among newly collected VZV strains around the world.



2013 ◽  
Vol 154 (3) ◽  
pp. 83-92
Author(s):  
Mariann Harangi ◽  
Noémi Zsíros ◽  
Lilla Juhász ◽  
György Paragh

Statin therapy is considered to be safe and rarely associated with serious adverse events. However, a significant proportion of patients on statin therapy show some degree of intolerance which can lead to decreased adherence to statin therapy. The authors summarize the symptoms, signs and frequencies of the most common statin-induced adverse effects and their most important risk factors including some single nucleotide polymorphisms and gene mutations. Also, they review the available approaches to detect and manage the statin-intolerant patients. Orv. Hetil., 2013, 154, 83–92.



BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Divya Bakshi ◽  
Ashna Nagpal ◽  
Varun Sharma ◽  
Indu Sharma ◽  
Ruchi Shah ◽  
...  

Abstract Background Breast Cancer (BC) is associated with inherited gene mutations. High throughput genotyping of BC samples has led to the identification and characterization of biomarkers for the diagnosis of BC. The most common genetic variants studied are SNPs (Single Nucleotide Polymorphisms) that determine susceptibility to an array of diseases thus serving as a potential tool for identifying the underlying causes of breast carcinogenesis. Methods SNP genotyping employing the Agena MassARRAY offers a robust, sensitive, cost-effective method to assess multiple SNPs and samples simultaneously. In this present study, we analyzed 15 SNPs of 14 genes in 550 samples (150 cases and 400 controls). We identified four SNPs of genes TCF21, SLC19A1, DCC, and ERCC1 showing significant association with BC in the population under study. Results The SNPs were rs12190287 (TCF21) having OR 1.713 (1.08–2.716 at 95% CI) p-value 0.022 (dominant), rs1051266 (SLC19A1) having OR 3.461 (2.136–5.609 at 95% CI) p-value 0.000000466 (dominant), rs2229080 (DCC) having OR 0.6867 (0.5123–0.9205 at 95% CI) p-value 0.0116 (allelic) and rs2298881 (ERCC1) having OR 0.669 (0.46–0.973 at 95% CI), p-value 0.035 (additive) respectively. The in-silico analysis was further used to fortify the above findings. Conclusion It is further anticipated that the variants should be evaluated in other population groups that may aid in understanding the genetic complexity and bridge the missing heritability.



2006 ◽  
Vol 188 (12) ◽  
pp. 4453-4463 ◽  
Author(s):  
Patrick S. G. Chain ◽  
Ping Hu ◽  
Stephanie A. Malfatti ◽  
Lyndsay Radnedge ◽  
Frank Larimer ◽  
...  

ABSTRACT Yersinia pestis, the causative agent of bubonic and pneumonic plagues, has undergone detailed study at the molecular level. To further investigate the genomic diversity among this group and to help characterize lineages of the plague organism that have no sequenced members, we present here the genomes of two isolates of the “classical” antiqua biovar, strains Antiqua and Nepal516. The genomes of Antiqua and Nepal516 are 4.7 Mb and 4.5 Mb and encode 4,138 and 3,956 open reading frames, respectively. Though both strains belong to one of the three classical biovars, they represent separate lineages defined by recent phylogenetic studies. We compare all five currently sequenced Y. pestis genomes and the corresponding features in Yersinia pseudotuberculosis. There are strain-specific rearrangements, insertions, deletions, single nucleotide polymorphisms, and a unique distribution of insertion sequences. We found 453 single nucleotide polymorphisms in protein-coding regions, which were used to assess the evolutionary relationships of these Y. pestis strains. Gene reduction analysis revealed that the gene deletion processes are under selective pressure, and many of the inactivations are probably related to the organism's interaction with its host environment. The results presented here clearly demonstrate the differences between the two biovar antiqua lineages and support the notion that grouping Y. pestis strains based strictly on the classical definition of biovars (predicated upon two biochemical assays) does not accurately reflect the phylogenetic relationships within this species. A comparison of four virulent Y. pestis strains with the human-avirulent strain 91001 provides further insight into the genetic basis of virulence to humans.





2004 ◽  
Vol 186 (9) ◽  
pp. 2862-2871 ◽  
Author(s):  
S. O'Flaherty ◽  
A. Coffey ◽  
R. Edwards ◽  
W. Meaney ◽  
G. F. Fitzgerald ◽  
...  

ABSTRACT Phage K is a polyvalent phage of the Myoviridae family which is active against a wide range of staphylococci. Phage genome sequencing revealed a linear DNA genome of 127,395 bp, which carries 118 putative open reading frames. The genome is organized in a modular form, encoding modules for lysis, structural proteins, DNA replication, and transcription. Interestingly, the structural module shows high homology to the structural module from Listeria phage A511, suggesting intergenus horizontal transfer. In addition, phage K exhibits the potential to encode proteins necessary for its own replisome, including DNA ligase, primase, helicase, polymerase, RNase H, and DNA binding proteins. Phage K has a complete absence of GATC sites, making it insensitive to restriction enzymes which cleave this sequence. Three introns (lys-I1, pol-I2, and pol-I3) encoding putative endonucleases were located in the genome. Two of these (pol-I2 and pol-I3) were found to interrupt the DNA polymerase gene, while the other (lys-I1) interrupts the lysin gene. Two of the introns encode putative proteins with homology to HNH endonucleases, whereas the other encodes a 270-amino-acid protein which contains two zinc fingers (CX2CX22CX2C and CX2CX23CX2C). The availability of the genome of this highly virulent phage, which is active against infective staphylococci, should provide new insights into the biology and evolution of large broad-spectrum polyvalent phages.



Sign in / Sign up

Export Citation Format

Share Document