scholarly journals N-3 PUFA Prevent Oxidative Stress in a Rat Model of Beta-Amyloid-Induced Toxicity

2021 ◽  
Vol 14 (4) ◽  
pp. 339
Author(s):  
Maria Grazia Morgese ◽  
Stefania Schiavone ◽  
Maria Bove ◽  
Anna Laura Colia ◽  
Stefania Dimonte ◽  
...  

Polyunsaturated fatty acids (PUFA) are involved in brain disorders associated to amyloid beta (Aβ) toxicity for which oxidative stress, neurochemical dysfunctions, and neuroinflammation are underlying mechanisms. Here, mechanisms through which lifelong exposure to n-3 PUFA-enriched or n-6/n-3 balanced diets could elicit a protective role in a rat model of Aβ-induced toxicity were investigated. To this aim, we quantified hippocampal reactive oxygen species (ROS) amount, 8-hydroxy-2′-deoxyguanosine and interleukin-10 levels, NADPH oxidase (NOX) 1, NOX2, superoxide dismutase 1, and glutathione contents, as well as plasmatic malondialdehyde. Moreover, in the same experimental groups, we assessed tryptophan, serotonin, and its turnover, kynurenine, and noradrenaline amounts. Results showed increased hippocampal ROS and NOX2 levels, serotonin turnover, kynurenine, and noradrenaline contents in Aβ-treated rats. Both n-6/n-3 balanced and n-3 PUFA enriched diets reduced ROS production, NOX1 and malondialdehyde levels, serotonin turnover, and kynurenine amount in Aβ-injected rats, while increasing NOX2, superoxide dismutase 1, and serotonin contents. No differences in plasmatic coenzyme Q10, reduced glutathione (GSH) and tryptophan levels were detected among different experimental groups, whereas GSH + oxidized glutathione (GSSG) levels were increased in sham animals fed with n-3 PUFA enriched diet and in Aβ-treated rats exposed to both n-6/n-3 balanced and n-3 enriched diets. In addition, Aβ-induced decrease of interleukin-10 levels was prevented by n-6/n-3 PUFA balanced diet. N-3 PUFA enriched diet further increased interleukin-10 and 8-hydroxy-2′-deoxyguanosine levels. In conclusion, our data highlight the possible neuroprotective role of n-3 PUFA in perturbation of oxidative equilibrium induced by Aβ-administration.

2018 ◽  
Vol 61 ◽  
pp. 92-99 ◽  
Author(s):  
Lihui Zhou ◽  
Lian Ouyang ◽  
Shuangzhi Lin ◽  
Song Chen ◽  
YingJie Liu ◽  
...  

2012 ◽  
Vol 12 (4) ◽  
pp. 741-750 ◽  
Author(s):  
Kalaiselvi Velayutham Anand ◽  
Mohamed Sultan Mohamed Jaabir ◽  
Philip A Thomas ◽  
Pitchairaj Geraldine

2021 ◽  
Author(s):  
Pavol Melicher ◽  
Petr Dvořák ◽  
Yuliya Krasylenko ◽  
Alexey Shapiguzov ◽  
Jaakko Kangasjärvi ◽  
...  

AbstractIron superoxide dismutase 1 (FSD1) was recently characterized as a plastidial, cytoplasmic, and nuclear superoxide dismutase with osmoprotective and antioxidative functions. However, its role in oxidative stress tolerance is not well understood. Here, we characterized the role of FSD1 in response to methyl viologen (MV)-induced oxidative stress in Arabidopsis thaliana. The findings demonstrated that the antioxidative function of FSD1 depends on the availability of Cu2+ in growth media. Prolonged MV exposure led to a decreased accumulation rate of superoxide, higher levels of hydrogen peroxide production, and higher protein carbonylation in the fsd1 mutants and transgenic plants lacking a plastidial pool of FSD1, compared to the wild type. MV led to a rapid increase in FSD1 activity, followed by a decrease. Chloroplastic localization of FSD1 is necessary for these changes. Proteomic analysis showed that the sensitivity of the fsd1 mutants coincided with decreased abundance of ferredoxin and light PSII harvesting complex proteins, with altered levels of signaling proteins. Collectively, the study provides evidence for the conditional antioxidative function of FSD1 and its possible role in signaling.


2019 ◽  
Vol 36 (3) ◽  
pp. 245-253 ◽  
Author(s):  
Özgür Fırat ◽  
Özlem Kaya

In this research, to determine toxicity of mercury (Hg) and whether selenium (Se) has any role in protection of this toxicity, it was investigated the alterations in oxidative stress parameters in tissues of Oreochromis niloticus. For this purpose, fish were exposed to 0.01 and 0.05 ppm Hg and 0.01 ppm Hg+0.01 ppm Se and 0.05 ppm Hg+0.05 ppm Se for 4 and 21 days and activities of superoxide dismutase (SOD) and catalase (CAT) and levels of malondialdehyde (MDA) in gill and liver were determined. It was observed significant changes in all analyzed parameters due to tissue, medium concentration and exposure period in the exposure of mercury alone and Hg+Se mixtures. In Hg alone, and in combination with Se especially in their higher medium concentrations, activities of SOD and CAT in the gill and liver significantly increased at 4 days (P˂0.05), while they significantly decreased at 21 days (P˂0.05). In the exposure of Hg and Hg+Se and in the both tissues, it not determined significant alteration in the MDA levels at 4 days (P˃0.05), while they elevated in their higher concentrations at 21 days (P˂0.05). In conclusion, it was determined the increases or decreases in activities of SOD and CAT and levels of MDA in O. niloticus were higher in the Hg alone than Hg+Se mixtures and selenium has a protective effect on oxidative toxicity of mercury.


2021 ◽  
Vol 22 (15) ◽  
pp. 7765
Author(s):  
Youichirou Higashi ◽  
Takaaki Aratake ◽  
Takahiro Shimizu ◽  
Shogo Shimizu ◽  
Motoaki Saito

Stroke is a major cause of death worldwide, leading to serious disability. Post-ischemic injury, especially in the cerebral ischemia-prone hippocampus, is a serious problem, as it contributes to vascular dementia. Many studies have shown that in the hippocampus, ischemia/reperfusion induces neuronal death through oxidative stress and neuronal zinc (Zn2+) dyshomeostasis. Glutathione (GSH) plays an important role in protecting neurons against oxidative stress as a major intracellular antioxidant. In addition, the thiol group of GSH can function as a principal Zn2+ chelator for the maintenance of Zn2+ homeostasis in neurons. These lines of evidence suggest that neuronal GSH levels could be a key factor in post-stroke neuronal survival. In neurons, excitatory amino acid carrier 1 (EAAC1) is involved in the influx of cysteine, and intracellular cysteine is the rate-limiting substrate for the synthesis of GSH. Recently, several studies have indicated that cysteine uptake through EAAC1 suppresses ischemia-induced neuronal death via the promotion of hippocampal GSH synthesis in ischemic animal models. In this article, we aimed to review and describe the role of GSH in hippocampal neuroprotection after ischemia/reperfusion, focusing on EAAC1.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


Author(s):  
Fengyun Zhou ◽  
Ting Feng ◽  
Xiangqi Lu ◽  
Huicheng Wang ◽  
Yangping Chen ◽  
...  

Abstract Mitochondrial reactive oxygen species (mtROS)-induced apoptosis has been suggested to contribute to myocardial ischemia/reperfusion injury. Interleukin 35 (IL-35), a novel anti-inflammatory cytokine, has been shown to protect the myocardium and inhibit mtROS production. However, its effect on cardiomyocytes upon exposure to hypoxia/reoxygenation (H/R) damage has not yet been elucidated. The present study aimed to investigate the potential protective role and underlying mechanisms of IL-35 in H/R-induced mouse neonatal cardiomyocyte injury. Mouse neonatal cardiomyocytes were challenged to H/R in the presence of IL-35, and we found that IL-35 dose dependently promotes cell viability, diminishes mtROS, maintains mitochondrial membrane potential, and decreases the number of apoptotic cardiomyocytes. Meanwhile, IL-35 remarkably activates mitochondrial STAT3 (mitoSTAT3) signaling, inhibits cytochrome c release, and reduces apoptosis signaling. Furthermore, co-treatment of the cardiomyocytes with the STAT3 inhibitor AG490 abrogates the IL-35-induced cardioprotective effects. Our study identified the protective role of IL-35 in cardiomyocytes following H/R damage and revealed that IL-35 protects cardiomyocytes against mtROS-induced apoptosis through the mitoSTAT3 signaling pathway during H/R.


Sign in / Sign up

Export Citation Format

Share Document