scholarly journals Evaluation of 64Cu-Labeled New Anti-EGFR Antibody NCAB001 with Intraperitoneal Injection for Early PET Diagnosis of Pancreatic Cancer in Orthotopic Tumor-Xenografted Mice and Nonhuman Primates

2021 ◽  
Vol 14 (10) ◽  
pp. 950
Author(s):  
Hiroki Matsumoto ◽  
Tadashi Watabe ◽  
Chika Igarashi ◽  
Tomoko Tachibana ◽  
Fukiko Hihara ◽  
...  

Objectives: To improve the prognosis of pancreatic cancer, new imaging methods to identify tumor lesions at a size of <1 cm are urgently needed. To approach this clinical issue, we developed a new method to detect small tumor lesions in the pancreas (≥3 mm) by positron emission tomography (PET) using an intraperitoneally (ip)-administered 64Cu-labeled new anti-epidermal growth factor receptor (EGFR) antibody (encoded as NCAB001), called 64Cu-NCAB001 ipPET. Methods: NCAB001 was manufactured under cGMP conditions and labeled with 64Cu. The radiochemical and biological properties of 64Cu-NCAB001 were evaluated. Tumor uptake of an ip-administered 64Cu-NCAB001 in mice with orthotopic pancreatic tumor xPA1-DC xenografts was also evaluated. Pharmacokinetics and radiation dosimetry were examined using PET images acquired after the ip administration of 64Cu-NCAB001 into cynomolgus monkeys with pharmacologic safety monitoring. Results: Radio-chromatography, cell-binding assays, and biodistribution of 64Cu-NCAB001 in mice were identical to those of our previous data with clinically available cetuximab. Small tumor lesions in the pancreas (≥3 mm) of mice could be identified by 64Cu-NCAB001 ipPET. The ip administration of 64Cu-NCAB001 into monkeys was safely conducted using ultrasound imaging. PET images in monkeys showed that ip-administered 64Cu-NCAB001 was distributed throughout the intraperitoneal cavity for up to 6 h and cleared thereafter. Most of the radioactivity was distributed in the liver and the large intestine. The radioactivity around the pancreas became negligible 24 h after administration. The estimated human effective dose was 0.0174 mSv/MBq. Conclusion: Our data support the initiation of clinical trials of 64Cu-NCAB001 ipPET to transfer this promising tool for the early diagnosis of pancreatic cancers.

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 67
Author(s):  
Hiroki Matsumoto ◽  
Chika Igarashi ◽  
Tomoko Tachibana ◽  
Fukiko Hihara ◽  
Atsuo Waki ◽  
...  

Early diagnosis of pancreatic cancer using current imaging modalities remains challenging. We have developed a new approach to identify tumor lesions ≥ 3 mm in the pancreas by positron emission tomography (PET) with a new intraperitoneally administered 64Cu-labeled anti-epidermal growth factor receptor (EGFR) antibody (encoded as NCAB001), called 64Cu-NCAB001 ipPET. Generally, in clinical research, a radiometal-antibody complex must be prepared immediately before use at the imaging site. To make 64Cu-NCAB001 ipPET available to daily clinical practices in a sustainable way, the NCAB001-chelator conjugate and 64Cu-NCAB001 must be characterized and stabilized. NCAB001 was manufactured under cGMP conditions. NCAB001 was conjugated with a bifunctional chelator (p-SCN-Bn-PCTA), and the antibody-chelator conjugate (PCTA-NCAB001) was characterized by LC/MS and ELISA. Thereafter, to effectively manufacture 64Cu-NCAB001, we developed a new formulation to stabilize PCTA-NCAB001 and 64Cu-NCAB001. An average of three PCTA chelators were conjugated per molecule of NCAB001. The relative binding potency of PCTA-NCAB001 was comparable to cetuximab. The formulation consisting of acetate buffer, glycine, and polysorbate-80 stabilized PCTA-NCAB001 for a year-long storage. Additionally, this formulation enabled the stabilization of 64Cu-NCAB001 for up to 24 h after radiolabeling with a sufficient radioactivity concentration for clinical use. These results may accelerate the future use of 64Cu-NCAB001 ipPET in clinical settings for the early diagnosis and treatment of pancreatic cancer.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3449
Author(s):  
Viswas Raja Solomon ◽  
Kris Barreto ◽  
Wendy Bernhard ◽  
Elahe Alizadeh ◽  
Patrick Causey ◽  
...  

To develop imaging and therapeutic agents, antibodies are often conjugated randomly to a chelator/radioisotope or drug using a primary amine (NH2) of lysine or sulfhydryl (SH) of cysteine. Random conjugation to NH2 or SH groups can require extreme conditions and may affect target recognition/binding and must therefore be tested. In the present study, nimotuzumab was site-specifically labeled using ∆N-SpyCatcher/SpyTag with different chelators and radiometals. Nimotuzumab is a well-tolerated anti-EGFR antibody with low skin toxicities. First, ΔN-SpyCatcher was reduced using tris(2-carboxyethyl)phosphine (TCEP), which was followed by desferoxamine-maleimide (DFO-mal) conjugation to yield a reactive ΔN-SpyCatcher-DFO. The ΔN-SpyCatcher-DFO was reacted with nimotuzumab-SpyTag to obtain stable nimotuzumab-SpyTag-∆N-SpyCatcher-DFO. Radiolabeling was performed with 89Zr, and the conjugate was used for the in vivo microPET imaging of EGFR-positive MDA-MB-468 xenografts. Similarly, ∆N-SpyCatcher was conjugated to an eighteen-membered macrocyclic chelator macropa-maleimide and used to radiolabel nimotuzumab-SpyTag with actinium-225 (225Ac) for in vivo radiotherapy studies. All constructs were characterized using biolayer interferometry, flow cytometry, radioligand binding assays, HPLC, and bioanalyzer. MicroPET/CT imaging showed a good tumor uptake of 89Zr-nimotuzumab-SpyTag-∆N-SpyCatcher with 6.0 ± 0.6%IA/cc (n = 3) at 48 h post injection. The EC50 of 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher and 225Ac-control-IgG-SpyTag-∆N-SpyCatcher against an EGFR-positive cell-line (MDA-MB-468) was 3.7 ± 3.3 Bq/mL (0.04 ± 0.03 nM) and 18.5 ± 4.4 Bq/mL (0.2 ± 0.04 nM), respectively. In mice bearing MDA-MB-468 EGFR-positive xenografts, 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher significantly (p = 0.0017) prolonged the survival of mice (64 days) compared to 225Ac-control IgG (28.5 days), nimotuzumab (28.5 days), or PBS-treated mice (30 days). The results showed that the conjugation and labeling using SpyTag/∆N-SpyCatcher to nimotuzumab did not significantly (p > 0.05) alter the receptor binding of nimotuzumab compared with a non-specific conjugation approach. 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher was effective in vitro and in an EGFR-positive triple negative breast cancer xenograft model.


Author(s):  
Amin Ghareyazi ◽  
Amir Mohseni ◽  
Hamed Dashti ◽  
Abdollah Dehzangi ◽  
Hamid R. Rabiee ◽  
...  

It has now known that at least 10% of samples with pancreatic cancers (PC) contain a causative mutation in the known susceptibility genes, suggesting the importance of identifying cancer-associated genes that carry the causative mutations in high-risk individuals for early detection of PC. In this study, we develop a statistical pipeline using a new concept, called gene-motif, that utilizes both mutated genes and mutational processes to identify 4,211 3-nucleotide PC-associated gene-motifs within 203 significantly mutated genes in PC. Using these gene-motifs as distinguishable features for pancreatic cancer subtyping results in identifying five PC subtypes with distinguishable phenotypes and genotypes. Our comprehensive biological characterization reveals that these PC subtypes are associated with different molecular mechanisms including unique cancer related signaling pathways, in which for most of the subtypes targeted treatment options are currently available. Some of the pathways we identified in all five PC subtypes, including cell cycle and the Axon guidance pathway are frequently seen and mutated in cancer. We also identified Protein kinase C, EGFR (epidermal growth factor receptor) signaling pathway and P53 signaling pathways as potential targets for treatment of the PC subtypes. Altogether, our results uncover the importance of considering both the mutation type and mutated genes in the identification of cancer subtypes and biomarkers.


2020 ◽  
Vol 21 (13) ◽  
pp. 4767 ◽  
Author(s):  
Camille Huart ◽  
Jia-Wei Chen ◽  
Benjamin Le Calvé ◽  
Carine Michiels ◽  
Anne-Catherine Wéra

Pancreatic cancer is a very aggressive cancer type associated with one of the poorest prognostics. Despite several clinical trials to combine different types of therapies, none of them resulted in significant improvements for patient survival. Pancreatic cancers demonstrate a very broad panel of resistance mechanisms due to their biological properties but also their ability to remodel the tumour microenvironment. Radiotherapy is one of the most widely used treatments against cancer but, up to now, its impact remains limited in the context of pancreatic cancer. The modern era of radiotherapy proposes new approaches with increasing conformation but also more efficient effects on tumours in the case of charged particles. In this review, we highlight the interest in using charged particles in the context of pancreatic cancer therapy and the impact of this alternative to counteract resistance mechanisms.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2862
Author(s):  
Rasmus V. Flak ◽  
Rune V. Fisker ◽  
Niels H. Bruun ◽  
Mogens T. Stender ◽  
Ole Thorlacius-Ussing ◽  
...  

(1) Background: Irreversible electroporation (IRE) is a nonthermal ablation technique that is being studied in nonmetastatic pancreatic cancer (PC). Most published studies use imaging outcomes as an efficacy endpoint, but imaging interpretation can be difficult and has yet to be correlated with survival. The aim of this study was to examine the correlation of imaging endpoints with survival in a cohort of IRE-treated PC patients. (2) Methods: Several imaging endpoints were examined before and after IRE on 18F-fluorodeoxyglucose positron emission tomography (PET) with computed tomography. Separate analyses were performed at the patient and lesion levels. Mortality rate (MR) ratios for imaging endpoints after IRE were estimated. (3) Results: Forty-one patients were included. Patient-level analysis revealed that progressive disease (PD), as defined by RECIST 1.1, is correlated with a higher MR at all time intervals, but PD, as defined by EORTC PET response criteria, is only correlated with the MR in the longest interval. No correlation was found between PD, as defined by RECIST, and the MR in the lesion-level analysis. (4) Conclusions: Patient-level PD, as defined by RECIST, was correlated with poorer survival after IRE ablation, whereas no correlations were observed in the lesion-level analyses. Several promising lesion-level outcomes were identified.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koki Makabe ◽  
Takeshi Yokoyama ◽  
Shiro Uehara ◽  
Tomomi Uchikubo-Kamo ◽  
Mikako Shirouzu ◽  
...  

AbstractAntibodies have been widely used for cancer therapy owing to their ability to distinguish cancer cells by recognizing cancer-specific antigens. Epidermal growth factor receptor (EGFR) is a promising target for the cancer therapeutics, against which several antibody clones have been developed and brought into therapeutic use. Another antibody clone, 528, is an antagonistic anti-EGFR antibody, which has been the focus of our antibody engineering studies to develop cancer drugs. In this study, we explored the interaction of 528 with the extracellular region of EGFR (sEGFR) via binding analyses and structural studies. Dot blotting experiments with heat treated sEGFR and surface plasmon resonance binding experiments revealed that 528 recognizes the tertiary structure of sEGFR and exhibits competitive binding to sEGFR with EGF and cetuximab. Single particle analysis of the sEGFR–528 Fab complex via electron microscopy clearly showed the binding of 528 to domain III of sEGFR, the domain to which EGF and cetuximab bind, explaining its antagonistic activity. Comparison between the two-dimensional class average and the cetuximab/sEGFR crystal structure revealed that 528 binds to a site that is shifted from, rather than identical to, the cetuximab epitope, and may exclude known drug-resistant EGFR mutations.


Sign in / Sign up

Export Citation Format

Share Document