scholarly journals Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach

Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 598 ◽  
Author(s):  
Alhussain H. Aodah ◽  
Mohamed H. Fayed ◽  
Ahmed Alalaiwe ◽  
Bader B. Alsulays ◽  
Mohammed F. Aldawsari ◽  
...  

Compression of cohesive, poorly compactable, and high-dose metformin hydrochloride into the orally disintegrating tablet (ODT) is challenging. The objective of this study was to develop metformin ODT using the moisture activated dry granulation (MADG) process. There are no reports in the literature regarding the development of ODT based on MADG technology. The feasibility of developing metformin ODT was assessed utilizing a 32 full factorial design to elucidate the influence of water amount (X1) and the amount of pregelatinized starch (PGS; X2) as independent variables on key granules and tablets’ characteristics. The prepared granules and tablets were characterized for granule size, bulk density, flow properties, tablets’ weight variation, breaking force, friability, capping tendency, in vitro and in vivo disintegration, and drug release. Regression analysis showed that X1 and X2 had a significant (p ≤ 0.05) impact on key granules and tablets’ properties with a predominant effect of the water amount. Otherwise, the amount of PGS had a pronounced effect on tablet disintegration. Optimized ODT was found to show better mechanical strength, low friability, and short disintegration time in the oral cavity. Finally, this technique is expected to provide better ODT for many kinds of high-dose drugs that can improve the quality of life of patients.

Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Author(s):  
Sarika S. Malode ◽  
Milind P. Wagh

The objective of present work was to develop taste masked orodispersible tablets of mirabegron. Mirabegron is beta 3 adrenoceptor agonist used to treat overactive bladder. Overactive bladder (OAB) is defined as a symptom syndrome showing feeling of urgency to urinate, typically accompanied by frequent daytime and nocturnal urination, in the absence of proven infection or other obvious pathology. Over active bladders are generally common in geriatrics. Moreover, this drug has a very strong bitter taste. Frequent dosing requires frequent water intake, which further aggregates the condition of over active bladder and bitter taste of drug affects patient compliance. Hence a need arises to mask the bitter taste for development of an ODT which does not require consuming water with every dosage. In this work, the bitter taste of mirabegron was masked by forming a complex with an ion exchange resin tulsion 344. The drug resin complexation process was optimized for resin activation, drug: resin ratio, soaking time and stirring time. In –vitro release studies revealed complete drug elution from the complex within 10 minutes in pH 1.2 buffer. The taste-masked complex was then formulated into palatable orodispersible tablets using a direct compression approach by use of superdisintegrants to achieve a rapid disintegration. The tablets were evaluated for weight variation, hardness, friability, drug content, wetting time, In- vivo disintegration time and in-vitro dissolution time.


2017 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Hrishav Das Purkayastha ◽  
Bipul Nath

Objective: The aim of the present investigation was to design and evaluate orally disintegrating tablet (ODT) of Ibuprofen, a NSAID drug used for the treatment of arthritis with a view to improve its oral bioavailability. The focus of the current study was to develop ODT of Ibuprofen using super disintegrants for ease of administration and its physicochemical characterization.Methods: Tablets were made from blends by direct compression method. All the ingredients were passed through mesh no. 80. All the ingredients were co-ground in a pestle motor. The resulting blend was lubricated with magnesium stearate and compressed into tablets using the Cadmach single punch (round shaped, 8 mm thick) machine.Results: Physicals parameters of the prepared tablets like Hardness, Weight variation, Friability, thickness, drug content etc. found within the limits. The disintegration time of prepared ODTs was in the range of 45 to 55 seconds. In vitro dispersion time was found to be 22 to 52 seconds which may be attributed to faster uptake of water due to the porous structure formed by super disintegrants. Short disintegration and faster release of ibuprofen were observed with Cross carmellose sodium as compared to sodium starch glycollate.Conclusion: It is concluded that F3 offered the relatively rapid release of Ibuprofen when compared with other formulations. The increase in the concentrations of super disintegrants may lead to increase in the drug release. The formulation prepared with cross carmellose sodium was offered the relatively rapid release of Ibuprofen when compared with other concentrations of both the super disintegrant. 


Author(s):  
Bhageerathy A ◽  
Sandhya Murali ◽  
eny Sara Thomas ◽  
Sigi Vasanthkumar ◽  
Prasanth V V

A total of nine formulations of fast dissolving films of Losartan Potassium were developed by solvent casting method using film forming polymers such as HPMC E5, E15 and E50 and other film modifiers. The appearances of films were transparent, thin, flexible, elastic, smooth and transparent. The weight variation ranged between 16.14 ± 0.192 and 17.31 ± 0.313 and showed that there was no significant difference in the weight of individual formulations. All the formulations showed more than 150 of folding endurance. The drug content was found to be in an acceptable range for all the formulations which indicated uniform distribution of drug. A rapid dissolution of all the film was observed by the dissolution test, in which above 90% of Losartan Potassium was released within 5 min. The formulation F1 showed maximum drug release (98.73) within 5 minutes. Based on the in vitro drug release, drug content and in vitro disintegration time it is found that F1 was selected as the best formulation. The formulations showed satisfactory physical stability at 40°C at 75 % RH. Losartan Potassium (LOSAR-25) is shown in Figure 4. From the results of comparative studies of marketed product and it found that F1 showed 98.73% release within 5 min and LOSAR 25 showed 90.76% release in 30 min. In vitro studies indicate that this potential drug delivery system has considerably good stability and release profile. Nevertheless, further in vivo studies are warranted to confirm these results.


Author(s):  
Avani R. Gosai ◽  
Sanjay B. Patil ◽  
Krutika K. Sawant

The objective of the present investigation was to prepare oro dispersible tablets of ondansetron hydrochloride, because of its application in emesis condition, fast onset of action and avoidance of water is highly desirable. Tablets were prepared by direct compression using sodium starch glycolate and croscarmellose as superdisintegrants, as the combination of these two agents gives better disintegration of the tablet. Microcrystalline cellulose was used as diluent and mannitol, mint flavor, sodium saccharine to enhance the organoleptic properties of tablets. The tablets were evaluated for weight variation, mechanical strength, in vitro disintegration time, in vivo disintegration time, wetting time, and drug release characteristics. Hardness and friability data indicated good mechanical strength of tablets.  The results of in vitro disintegration time and in vivo disintegration time indicated that the tablets dispersed rapidly in mouth within 3 to 5 seconds. Dissolution study revealed faster release rate of ondansetron hydrochloride from the tablets as compared to pure drug and marketed conventional tablet formulation of ondansetron hydrochloride. It was concluded that superdisintegrants addition technique is a useful method for preparing oro dispersible tablets by direct compression method


Author(s):  
KULJIT SINGH ◽  
SHAILESH SHARMA

Objective: The present investigation was aimed towards developing calcium crosslinked derivative of carboxymethylated cassia fistula gum and crosscarmellose sodium based orodispersible tablets (ODTs) of propranolol hydrochloride for enhancing the bioavailability and efficacy. Methods: Orodispersible tablets (ODTs) of propranolol hydrochloride was formulated using natural (a carboxymethylated derivative of cassia fistula gum) and synthetic polymer (crosscarmellose sodium) by wet and dry granulation, lyophilization and cotton candy methods and then finally compressed by direct compression. The prepared ODTs were evaluated for several parameters such as hardness, friability, in vitro disintegration time, in vitro drug release. In vivo and stability studies were carried out on optimized formulation coding PC1. Results: Drug polymer interaction were judged by FT-IR, DSC and XRD. The optimized formulation coding PC1 prepared by cotton candy process containing 2.5% w/w of crosslinked cassia fistula gum has the least disintegration time (18.9±0.4s), weeting time (12.5±0.8s) and relased the drug of 88.2% within 10 min in contrast to croscarmellose sodium. In vivo absorption studies revealed that same formulation has Cmax (µg/ml) 2.13±0.73, tmax (h) 0.21±0.17 and (µg ml-1 h-1) 14.33±1.59. Conclusion: This research manuscript clearly shows the successful development of the ODTs loaded with an antihypertensive drug, namely propranolol hydrochloride. The formulation developed by cotton candy process utilizing crosslinked cassia fistula gum as a natural superdisintegrant in contrast to other existing techniques can be a best option over synthetic superdisintegrant i.e. crosscarmellose sodium. The prepared ODTs was enhanced the absorption rate by lowering tmax, which inturn enhance the bioavailability and the efficacy of drug.


Author(s):  
T NEELIMA RANI ◽  
Y INDIRA MUZIB

Objective: The main objective of the present research was formulation and evaluation of ezetimibe rapidmelts. Methods: As ezetimibe comes under Class II drug, solubility of the drug should be increased before formulation. For that solid dispersions were prepared with β-CD and PVP K-30 using coevaporation and kneading method. Among those solid dispersions prepared with β-CD (1:1.5) using coevaporation method has given better drug entrapment values compared to other solid dispersions. Those solid dispersions were formulated as rapidmelts using direct compression. In direct compression method, rapidmelts were prepared using superdisintegrants such as crospovidone, croscarmellose sodium, and starch 1500. Those are evaluated for both pre-compression and post-compression parameters. Rapidmelts of ezetimibe were prepared using sublimation method with subliming agents camphor, urea, and ammonium bicarbonate. The concentrations of subliming agents were found to be 2.5, 5.0, and 7.5%. Results: Rapidmelts prepared using direct compression and sublimation methods were evaluated for weight variation, hardness, friability, % drug content, and disintegration time. The best formulation was subjected to stability testing for 6 months at 25°C/60% RH and 40°C/75% RH. All the prepared formulations compiled with the pharmacopeial limits. In all the formulations, results suggest that E12 formulation has given the best results. Conclusion: From the result, it was concluded that rapidmelts prepared using sublimation method which has given better result than direct compression method. That final formulation was further evaluated for in vivo studies using rabbits.


2018 ◽  
Vol 21 (2) ◽  
pp. 101-108
Author(s):  
Sreebash Chandra Bhowmik ◽  
Marzia Alam ◽  
Md Saiful Islam Pathan

Metformin hydrochloride is a first line BCS class III oral anti-diabetic drug used for the treatment of type 2 diabetes. The main goal of this study was to formulate, prepare and evaluate natural gum-based immediate release metformin hydrochloride tablet. Seven different formulations of compressed tablets were prepared following wet granulation process using different concentrations (10, 20, 30, 50, 60, 70, 80 and 90 mg) of Aegle marmelos gum as a binder. Aegle marmelos gum is a biodegradable natural gum which is economic, easily available and found useful as tablet binder for both conventional and novel dosage forms. Other excipients used in the formulation were microcrystalline cellulose (MCC), croscarmellose sodium (CCS), maize starch, colloidal silicon dioxide (CSD), sodium starch glycolate (SSG), magnesium stearate etc. In the present study, the compressed tablets were evaluated for weight variation, thickness, hardness, friability, disintegration time and dissolution. In vitro drug release study was carried out in phosphate buffer (pH 6.8) at 37 ± 0.5oC with 50 rpm using USP Dissolution Apparatus 2-Paddle method. The flowability of granules for all the batches was optimum which reflected in the bulk density and angle of repose. It can be concluded from this study that combination of Aegle marmelos as a binder with other excipients can be prospectively used in the preparation of metformin hydrochloride immediate release (IR) tablet.Bangladesh Pharmaceutical Journal 21(2): 101-108, 2018


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 693
Author(s):  
Muhammad Zaman ◽  
Sadaf Saeed ◽  
Rabia Imtiaz Bajwa ◽  
Muhammad Shafeeq Ur Rahman ◽  
Saeed Ur Rahman ◽  
...  

The current study was designed to convert the poloxamer (PLX) into thiolated poloxamer (TPLX), followed by its physicochemical, biocompatibilities studies, and applications as a pharmaceutical excipient in the development of tacrolimus (TCM)-containing compressed tablets. Thiolation was accomplished by using thiourea as a thiol donor and hydrochloric acid (HCl) as a catalyst in the reaction. Both PLX and TPLX were evaluated for surface morphology based on SEM, the crystalline or amorphous nature of the particles, thiol contents, micromeritics, FTIR, and biocompatibility studies in albino rats. Furthermore, the polymers were used in the development of compressed tablets. Later, they were also characterized for thickness, diameter, hardness, weight variation, swelling index, disintegration time, mucoadhesion, and in vitro drug release. The outcomes of the study showed that the thiolation process was accomplished successfully, which was confirmed by FTIR, where a characteristic peak was noticed at 2695.9968 cm−1 in the FTIR scan of TPLX. Furthermore, the considerable concentration of the thiol constituents (20.625 µg/g of the polymer), which was present on the polymeric backbone, also strengthened the claim of successful thiolation. A mucoadhesion test illustrated the comparatively better mucoadhesion strength of TPLX compared to PLX. The in vitro drug release study exhibited that the TPLX-based formulation showed a more rapid (p < 0.05) release of the drug in 1 h compared to the PLX-based formulation. The in vivo toxicity studies confirmed that both PLX and TPLX were safe when they were administered to the albino rats. Conclusively, the thiolation of PLX made not only the polymer more mucoadhesive but also capable of improving the dissolution profile of TCM.


Author(s):  
Anjali Kushwaha

The bioavailability of drug is affected by various excipients present in the formulation. In case of tablets, the role of binders is very important for release of drug and bioavailability. In the present study, starch was extracted from the cashew nuts and used as binding agentat a concentration of 2% w/v, 4% w/v, 6% w/v and 8% w/v. The tablets were formulated by using famotidine drug and they were further evaluated for various parameters like weight variation, hardness, friability, disintegration time, in vitro and in vivo drug release. The results show that all parameters were found within the given Indian Pharmacopeial limits. The in vitro release studies were performed in 0.1 N HCl using dialysis methods. This shows that tablets containing 2 % of cashew starch showed maximum drug release (89%) then other formulations. Then optimized formulation was further used for in vivo study and results shows better bioavailability as compared to marketed products.


Sign in / Sign up

Export Citation Format

Share Document