scholarly journals Better Medicines for Older Patients: Considerations between Patient Characteristics and Solid Oral Dosage Form Designs to Improve Swallowing Experience

Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 32
Author(s):  
Nélio Drumond ◽  
Sven Stegemann

Oral drug administration provided as solid oral dosage forms (SODF) remains the major route of drug therapy in primary and secondary care. There is clear evidence for a growing number of clinically relevant swallowing issues (e.g., dysphagia) in the older patient population, especially when considering the multimorbid, frail, and polymedicated patients. Swallowing impairments have a negative impact on SODF administration, which leads to poor adherence and inappropriate alterations (e.g., crushing, splitting). Different strategies have been proposed over the years in order to enhance the swallowing experience with SODF, by using conventional administration techniques or applying swallowing aids and devices. Nevertheless, new formulation designs must be considered by implementing a patient centric approach in order to efficiently improve SODF administration by older patient populations. Together with appropriate SODF size reductions, innovative film coating materials that can be applied to SODF and provide swallowing safety and efficacy with little effort being required by the patients are still needed. With that in mind, a literature review was conducted in order to identify the availability of patient centric coating materials claiming to shorten esophageal transit times and improve the overall SODF swallowing experience for older patients. The majority of coating technologies were identified in patent applications, and they mainly included well-known water soluble polymers that are commonly applied into pharmaceutical coatings. Nevertheless, scientific evidence demonstrating the benefits of given SODF coating materials in the concerned patient populations are still very limited. Consequently, the availability for safe, effective, and clinically proven solutions to address the increasing prevalence of swallowing issues in the older patient population is still limited.

Author(s):  
Manisha Rokade ◽  
Pradnya Khandagale ◽  
Dipti Phadtare

The poor dissolution rate of water-insoluble drugs is still a substantial problem confronting the pharmaceutical industry. There are several methods used to increase the solubility of drugs, of those liquid-solid compact technique is a new and promising addition towards such a novel aim, that the solubility of the insoluble drug moiety is increased by the aid of non-volatile solvents and hence increasing the dissolution and bioavailability. Oral drug administration has been one of the most convenient and widely accepted routes of delivery for most of the therapeutic agents. It is one of the most extensively used routes of drug administration because of its obvious advantages of ease of administration, improved patient compliance, and convenience. The enhancement of oral bioavailability of poorly water-soluble drugs remains one of the most challenging aspects of drug development. A more recent technique, “powdered solution technology” or “Liquisolid technology”, has been applied to prepare water-insoluble drugs into rapid-release solid dosage forms. The limited solubility of drugs is a challenging issue for the industry, during the development of the ideal solid dosage form unit. The technique is based upon the dissolving the insoluble drug in the nonvolatile solvent and admixture of drug loaded solutions with appropriate carrier and coating materials to convert into acceptably flowing and compressible powders.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1241 ◽  
Author(s):  
Nélio Drumond ◽  
Sven Stegemann

Oral drug therapy is generally provided in the form of solid oral dosage forms (SODF) that have to be swallowed and move throughout the oro-esophageal system. Previous studies have provided evidence that the oro-esophageal transit of SODF depends on their shape, size, density, and surface characteristics. To estimate the impact of SODF surface coatings during esophageal transit, an in vitro system was implemented to investigate the gliding performance across an artificial mucous layer. In this work, formulations comprised of different slippery-inducing agents combined with a common film forming agent were evaluated using the artificial mucous layer system. Xanthan gum (XG) and polyethylene glycol 1500 (PEG) were applied as film-forming agents, while carnauba wax (CW), lecithin (LE), carrageenan (CA), gellan gum (GG) and sodium alginate (SA), and their combination with sodium lauryl sulfate (SLS), were applied as slippery-inducing components. All tested formulations presented lower static friction (SF) as compared to the negative control (uncoated disc, C, F0), whereas only CW/SLS-based formulations showed similar performance to F0 regarding dynamic friction (DF). The applied multivariate analysis approach allowed a higher level of detail to the evaluation and supported a better identification of excipients and respective concentrations that are predicted to improve in vivo swallowing safety.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 889
Author(s):  
Kaijie Qian ◽  
Lorenzo Stella ◽  
David S. Jones ◽  
Gavin P. Andrews ◽  
Huachuan Du ◽  
...  

Among many methods to mitigate the solubility limitations of drug compounds, amorphous solid dispersion (ASD) is considered to be one of the most promising strategies to enhance the dissolution and bioavailability of poorly water-soluble drugs. The enhancement of ASD in the oral absorption of drugs has been mainly attributed to the high apparent drug solubility during the dissolution. In the last decade, with the implementations of new knowledge and advanced analytical techniques, a drug-rich transient metastable phase was frequently highlighted within the supersaturation stage of the ASD dissolution. The extended drug absorption and bioavailability enhancement may be attributed to the metastability of such drug-rich phases. In this paper, we have reviewed (i) the possible theory behind the formation and stabilization of such metastable drug-rich phases, with a focus on non-classical nucleation; (ii) the additional benefits of the ASD-induced drug-rich phases for bioavailability enhancements. It is envisaged that a greater understanding of the non-classical nucleation theory and its application on the ASD design might accelerate the drug product development process in the future.


Author(s):  
Laura C. Blomaard ◽  
Bas de Groot ◽  
Jacinta A. Lucke ◽  
Jelle de Gelder ◽  
Anja M. Booijen ◽  
...  

Abstract Objective The aim of this study was to evaluate the effects of implementation of the acutely presenting older patient (APOP) screening program for older patients in routine emergency department (ED) care shortly after implementation. Methods We conducted an implementation study with before-after design, using the plan-do-study-act (PDSA) model for quality improvement, in the ED of a Dutch academic hospital. All consecutive patients ≥ 70 years during 2 months before and after implementation were included. The APOP program comprises screening for risk of functional decline, mortality and cognitive impairment, targeted interventions for high-risk patients and education of professionals. Outcome measures were compliance with interventions and impact on ED process, length of stay (LOS) and hospital admission rate. Results Two comparable groups of patients (median age 77 years) were included before (n = 920) and after (n = 953) implementation. After implementation 560 (59%) patients were screened of which 190 (34%) were high-risk patients. Some of the program interventions for high-risk patients in the ED were adhered to, some were not. More hospitalized patients received comprehensive geriatric assessment (CGA) after implementation (21% before vs. 31% after; p = 0.002). In 89% of high-risk patients who were discharged to home, telephone follow-up was initiated. Implementation did not influence median ED LOS (202 min before vs. 196 min after; p = 0.152) or hospital admission rate (40% before vs. 39% after; p = 0.410). Conclusion Implementation of the APOP screening program in routine ED care did not negatively impact the ED process and resulted in an increase of CGA and telephone follow-up in older patients. Future studies should investigate whether sustainable changes in management and patient outcomes occur after more PDSA cycles.


2012 ◽  
Vol 4 (2) ◽  
pp. 58-62
Author(s):  
Aparajita Malakar ◽  
Bishwajit Bokshi ◽  
Utpal Kumar Karmakar

The aim of the present study was to increase the solubility of a poorly water soluble BCS class II drug, valsartan. Liquisolid technology and solid dispersion by kneading method were techniques used to improve the solubility of the drug by using non-volatile solvents and some hydrophilic carriers. Liquisolid compacts were prepared by dissolving the drug in suitable non volatile solvents. The various non volatile solvents used were PG, PEG, and glycerine. The carrier coating materials play an important role in improving the solubility of the drug. The dissolution rate of the drug was increased by using propylene glycol as non-volatile solvent at 20:1 ratio of carrier to coating material. Solid dispersion by kneading method were another attempt to improve solubility the various carrier materials used were PVP K 30, PEG 6000 and mannitol, these carriers are used in various ratios to improve its solubility. The dissolution rate of drug using solid dispersion kneading method with mannitol was increased at 1:3 ratio. The DSC and FTIR studies revealed no drug excipients interactions, whereas XRD revealed the reduced crystalinity of drug, which showed enhanced solubility. From the results it was concluded that the liquisolid compacts enhanced the solubility of valsartan in comparison to traditional solid dispersion method.DOI: http://dx.doi.org/10.3329/sjps.v4i2.10441  S. J. Pharm. Sci. 4(2) 2011: 58-62


Author(s):  
Leena Jacob ◽  
Abhilash Tv ◽  
Shajan Abraham

Objective: The study was carried out with an objective to achieve a potential sustained release oral drug delivery system of an antihypertensive drug, Perindopril which is a ACE inhibitor having half life of 2 hours. Perindopril is water soluble drug, so we can control or delay the release rate of drug by using release retarding polymers. This may also decrease the toxic side effects by preventing the high initial concentration in the blood.Method: Microcapsules were prepared by solvent evaporation technique using Eudragit L100 and Ethyl cellulose as a retarding agent to control the release rate and magnesium stearate as an inert dispersing carrier to decrease the interfacial tension between lipophilic and hydrophilic phase. Results: Prepared microcapsules were evaluated for the particle size, percentage yield, drug entrapment efficiency, flow property and in vitro drug release for 12 h. Results indicated that the percentage yield, mean particle size, drug entrapment efficiency and the micrometric properties of the microcapsules was influenced by various drug: polymer ratio. The release rate of microcapsules could be controlled as desired by adjusting the combination ratio of dispersing agents to retarding agents.Conclusion:Perindopril microcapsules can be successfully designed to develop sustained drug delivery, that reduces the dosing frequency and their by one can increase the patient compliance.


2017 ◽  
Vol 46 (suppl_1) ◽  
pp. i1-i22 ◽  
Author(s):  
R Hyatt ◽  
J K Taylor ◽  
M Robertson ◽  
J Dean ◽  
J Finch ◽  
...  

Author(s):  
Satbir Singh ◽  
Tarun Virmani ◽  
Reshu Virmani ◽  
Geeta Mahlawat ◽  
Pankaj Kumar

The Fast Dissolving Drug Delivery Systems sets a new benchmark was an expansion that came into existence in the early 1980’s and combat over the use of the different dosage form like tablets, suspension, syrups, capsules which are the other oral drug delivery systems. Fast Dissolving Drug Delivery System (FDTS)  has a major advantage over the conventional dosage forms since the drug gets rapidly disintegrated and dissolves in the saliva without the use of water .In spite of the downside lack of immediate onset of action; these oral dosage forms have valuable purposes such as self medication, increased patient compliance, ease of manufacturing and lack of pain. Hence Fast Disintegrating Tablets (FDTS) technology has been gaining importance now-a-days with wide variety of drugs serving many purposes. Fast Disintegrating Tablets (FDTS) has ever increased their demand in the last decade since they disintegrate in saliva in less than a minute that improved compliance in pediatrics and geriatric patients, who have difficulty in swallowing tablets or liquids. As fast dissolving tablet provide instantaneous disintegration after putting it on tongue, thereby rapid drug absorption and instantaneous bioavailability, whereas Fast dissolving oral films are used as practical alternative to FDTS. These films have a potential to deliver the drug systemically through intragastric, sublingual or buccal route of administration and also has been used for local action. In present review article different aspects of fast dissolving  tablets and films like method of preparations, latest technologies, evaluation parameters are discussed. This study will be useful for the researchers for their lab work.  


Sign in / Sign up

Export Citation Format

Share Document