scholarly journals Formulation and Characterization of Acetazolamide/Carvedilol Niosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 221
Author(s):  
Rehab Abdelmonem ◽  
Sammar F. Elhabal ◽  
Nevine S. Abdelmalak ◽  
Mohamed A. El-Nabarawi ◽  
Mahmoud H. Teaima

Acetazolamide (ACZ) is a diuretic used in glaucoma treatment; it has many side effects. Carvedilol (CAR) is a non-cardioselective beta-blocker used in the treatment of elevated intraocular pressure; it is subjected to the first-pass metabolism and causes fluids accumulation leading to edema. This study focuses on overcoming previous side effects by using a topical formula of a combination of the two previous drugs. Sixty formulations of niosomes containing Span 20, Span 60, Tween 20, and Tween 60 with two different ratios were prepared and characterized. Formulation with the lowest particle size (416.30 ± 0.23), the highest zeta potential (72.04 ± 0.43 mv), and the highest apparent coefficient of corneal permeability (0.02 ± 0.29 cm/h) were selected. The selected formula was incorporated into the gel using factorial design 23. Niosomes (acetazolamide/carvedilol) consisting of Span 60 and cholesterol in the molar ratio (7:6), HMPC, and carbopol with two different ratios were used. The selected formula was subjected to an in vivo study of intraocular pressure in ocular hypertensive rabbits for 60 h. The sustained gel formula of the combination decreased (IOP) to normal after 1 h and sustained efficacy for 4 days. Histological analysis of rabbit eyeballs treated with the selected formula showed improvement in glaucomatous eye retinal atrophy.

Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 197 ◽  
Author(s):  
Doaa Hassan ◽  
Rehab Abdelmonem ◽  
Menna Abdellatif

This study evaluated the efficacy of cationic nanoparticle (leciplex) to deliver carvedilol to ocular surface for glaucoma treatment as recent studies pointed out the effect of topical carvedilol on intraocular pressure, therefore carvedilol loaded leciplex formulae were prepared using soy phosphatidyl choline (SPC) and cationic surfactant (CTAB/DDAB) and characterized for morphology, entrapment efficiency, particle size, zeta potential and ex-vivo corneal permeation. Then the selected formula was evaluated via in-vivo studies in comparison with carvedilol solution. Leciplex nanoparticles appeared spherical in shape with entrapment efficiency exceeded 95% in all formulae. Leciplex formula composed of SPC and DDAB in (1:1) molar ratio showed the smallest particle size (16.04 ± 1.2 nm), highest zeta potential value (53.9 ± 0.91 mv) and highest apparent corneal permeability coefficient (0.1157 cm/h). Carvedilol leciplex reduced intraocular pressure (IOP) to normal range in ocular hypertensive rabbits after 30 min and duration of action lasted for 24 h, while carvedilol solution reduced IOP to normal value after 60 min and duration of action lasted for 6 h. Furthermore, histological examination of eyeballs of rabbits treated with carvedilol leciplex showed improvement of retinal atrophy of glaucomatous eyes. This study concluded that leciplex improve transcorneal permeation and bioavailability of carvedilol.


1999 ◽  
Vol 158 (2) ◽  
pp. 125-131 ◽  
Author(s):  
M.F. Sauvage ◽  
A. Rousseau ◽  
P. Marquet ◽  
F. Dumeirain ◽  
C. Raby ◽  
...  
Keyword(s):  

1977 ◽  
Vol 37 (01) ◽  
pp. 154-161 ◽  
Author(s):  
B. A Janik ◽  
S. E Papaioannou

SummaryUrokinase, streptokinase, Brinase, trypsin, and SN 687, a bacterial exoprotease, have been evaluated in an ex vivo assay system. These enzymes were injected into rabbits and the fibrinolytic activity as well as other coagulation parameters were measured by in vitro techniques. Dose-response correlations have been made using the euglobulin lysis time as a measure of fibrinolytic activity and the 50% effective dose has been determined for each enzyme. Loading doses, equal to four times the 50% effective dose, were administered to monitor potential toxicity revealing that Brinase, trypsin, and SN 687 were very toxic at this concentration.Having established the 50% effective dose for each enzyme, further testing was conducted where relevant fibrinolytic and coagulation parameters were measured for up to two days following a 50% effective dose bolus injection of each enzyme. Our results have demonstrated that urokinase and streptokinase are plasminogen activators specifically activating the rabbit fibrinolytic system while Brinase, trypsin and SN 687 increase the general proteolytic activity in vivo.The advantages of this ex vivo assay system for evaluating relative fibrinolytic potencies and side effects for plasminogen activators and fibrinolytic proteases have been discussed.


2020 ◽  
Vol 21 (15) ◽  
pp. 1688-1698
Author(s):  
Germeen N.S. Girgis

Purpose: The work was performed to investigate the feasibility of preparing ocular inserts loaded with Poly-ε-Caprolactone (PCL) nanoparticles as a sustained ocular delivery system. Methods: First, Atorvastatin Calcium-Poly-ε-Caprolactone (ATC-PCL) nanoparticles were prepared and characterized. Then, the optimized nanoparticles were loaded within inserts formulated with Methylcellulose (MC) and Polyvinyl Alcohol (PVA) by a solvent casting technique and evaluated physically, for in-vitro drug release profile. Finally, an in-vivo study was performed on the selected formulation to prove non-irritability and sustained ocular anti-inflammatory efficacy compared with free drug-loaded ocuserts. Results: The results revealed (ATC-PCL) nanoparticles prepared with 0.5% pluronic F127 were optimized with 181.72±3.6 nm particle size, 0.12±0.02 (PDI) analysis, -27.4± 0.69 mV zeta potential and 62.41%±4.7% entrapment efficiency. Nanoparticles loaded ocuserts manifested compatibility between drug and formulation polymers. Moreover, formulations complied with average weight 0.055±0.002 to 0.143±0.023 mg, and accepted pH. ATC-PCL nanoparticles loaded inserts prepared by 5% MC showed more sustained, prolonged in-vitro release over 24h. In-vivo study emphasized non-irritability, ocular anti-inflammatory effectiveness represented by smaller lid closure scores, and statistically significant lowering in PMN count after 3h. Conclusion: These findings proposed a possibly simple, new and affordable price technique to prepare promising (ATC-PCL) nanoparticles loaded inserts to achieve sustained release with prolonged antiinflammatory efficacy.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


Author(s):  
AMOL SHETE ◽  
PRIYANKA THORAT ◽  
RAJENDRA DOIJAD ◽  
SACHIN SAJANE

Objective: The objectives of present investigation were to prepare and evaluate proniosomes of neomycin sulphate (NS) by coacervation phase separation method by using sorbitan monostearate (span 60) and lecithin as a surfactant to increase the penetration through the skin and study the effect of concentration of the same. Methods: Proniosomes of neomycin sulphate (NS) were prepared by coacervation phase separation method by using span 60 and lecithin. The effect of concentration of span 60 and lecithin was studied by factorial design. The prepared proniosomes were converted to gel by using carbopol as a gelling agent. The prepared formulations were evaluated for entrapment efficiency, in vitro drug diffusion, in vitro antibacterial activity and in vivo skin irritation test etc. Results: All Formulation showed the percentage entrapment efficiency in the range 38.31±0.05% to 77.96±0.06%, good homogeneity and gel was easily spreadable with minimal of shear. Optimized formulation showed enhanced rate of diffusion in vitro, increase in zone of inhibition against staphylococcus aureus, no skin irritation and showed good stability. Conclusion: The results of present study indicates that proniosomal gel formulated by using combination of span 60, Lecithin, cholesterol can be used to enhance skin delivery of NS because of excellent permeation of drug. Developed proniosomal gel formulation was promising carrier for NS


Sign in / Sign up

Export Citation Format

Share Document