scholarly journals High Sensitivity Fiber Gas Pressure Sensor with Two Separated Fabry–Pérot Interferometers Based on the Vernier Effect

Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 31
Author(s):  
Xiaokang Song ◽  
Liangtao Hou ◽  
Xiangyu Wei ◽  
Hang Su ◽  
Chang Li ◽  
...  

A high sensitivity optical fiber gas pressure sensor based on paralleled Fabry–Pérot interferometers (FPIs) was demonstrated. One micro-cavity FPI is used as a reference FPI (FPI-1) to generate a Vernier effect and the other FPI (FPI-2) is used as a sensing tip. Both FPIs are connected by a 3-dB coupler to form a paralleled structure. The FPI-1 was fabricated by fusion splicing a piece of hollow core fiber (HCF) between two sections of single-mode fibers (SMF), whereas FPI-2 was formed by fusion splicing a section of HCF between SMF and a piece of HCF with a slightly smaller inner diameter for sensing pressure. The gas pressure sensitivity was amplified from 4 nm/MPa of single FPI to 45.76 nm/MPa of paralleled FPIs with an amplification factor of 11.44 and a linearity of 99.9%. Compared with the traditional fiber gas pressure sensors, the proposed sensor showed great advantages in sensitivity, mechanical strength, cost, and temperature influence resistant, which has potential in adverse-circumstance gas pressure sensing.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3677 ◽  
Author(s):  
Peng Chen ◽  
Yutang Dai ◽  
Dongsheng Zhang ◽  
Xiaoyan Wen ◽  
Minghong Yang

An extrinsic Fabry-Perot interferometer (EFPI) composed of double fiber FP cavities in a glass capillary tube to generate Vernier effect has been fabricated and employed for gas pressure sensing. A lead-in single-mode fiber (LSMF) and a reflective single-mode fiber (RSMF) were inserted into the capillary tube to form a FP cavity. Femtosecond (fs) laser was used to ablate openings on a capillary tube for gas passage to the FP cavity. A fusion hole was also drilled on the end face of a SMF by fs laser. The sensitivity of the sensor is enhanced due to Vernier effect. Experimental results show that the sensitivity was as high as 86.64 nm/MPa in the range of 0~0.6 MPa, which is 32.8 times larger than that of an open-cavity EFPI sensor without Vernier effect. The temperature cross-sensitivity of the sensor was measured to be about 5.18 KPa/°C. The proposed sensor was characterized by its high sensitivity, compact structure and ease of fabrication, and would have extensive application prospects in gas sensing fields.


2019 ◽  
Vol 37 (14) ◽  
pp. 3444-3451 ◽  
Author(s):  
Zhe Li ◽  
Yan-Xin Zhang ◽  
Wei-Gang Zhang ◽  
Ling-Xin Kong ◽  
Tie-Yi Yan ◽  
...  

2013 ◽  
Vol 336-338 ◽  
pp. 269-272
Author(s):  
Ning Wang ◽  
Xiao Xia Li

The pressure responding theoretical models are got for two intrinsic Fabry-Perot interferometric fiber pressure sensors fabricated by single mode and multimode fibers with different diameters. The pressure response curves are simulated by Matlab programs. The analysis showed that the sensitivity changing situation is different for two structures. The big size structure has a critical point of sensitivity. Higher sensitivity can be got by two structures, but the small size structure is more attractive than the big size structure.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 581
Author(s):  
Yanan Zhang ◽  
Shubin Zhang ◽  
Haitao Gao ◽  
Danping Xu ◽  
Zhuozhen Gao ◽  
...  

This paper proposes a Fabry–Perot pressure sensor based on AB epoxy adhesive with ultra-high sensitivity under low pressure. Fabry–Perot interference, located between single-mode fiber (SMF) and hollow-core fiber (HCF), is an ultra-thin AB epoxy film formed by capillary action. Then the thick HCF was used to fix the HCF and SMF at both ends with AB epoxy adhesive. Experimental results show that when the thickness of AB epoxy film is 8.74 μm, and the cavity length is 30 μm, the sensor has the highest sensitivity. The sensitivity is 257.79 nm/MPa within the pressure range of 0–70 kPa. It also investigated the influence of the curing time of AB epoxy on the interference spectrum. Experiments showed that the interference spectrum peak is blue-shifted with the increase of curing time. Our study also demonstrated the humidity stability of this pressure sensor. These characteristics mean that our sensor has potential applications in the biomedical field and ocean exploration.


2017 ◽  
Vol 35 (18) ◽  
pp. 4067-4071 ◽  
Author(s):  
Zhe Zhang ◽  
Changrui Liao ◽  
Jian Tang ◽  
Zhiyong Bai ◽  
Kuikui Guo ◽  
...  

Optik ◽  
2021 ◽  
pp. 166956
Author(s):  
Zhao Han ◽  
Guoguo Xin ◽  
Pengyu Nan ◽  
Ji Liu ◽  
Jiajie Zhu ◽  
...  

Sensor Review ◽  
2019 ◽  
Vol 39 (3) ◽  
pp. 397-406
Author(s):  
Xiaozhou Lu ◽  
Xi Xie ◽  
Qiaobo Gao ◽  
Hanlun Hu ◽  
Jiayi Yang ◽  
...  

Purpose The hands of intelligent robots perceive external stimuli and respond effectively according to tactile or pressure sensors. However, the traditional tactile and pressure sensors cannot perform human-skin-like intelligent properties of high sensitivity, large measurement range, multi-function and flexibility simultaneously. The purpose of this paper is to present a flexible tactile-pressure sensor based on hyper-elastics polydimethylsiloxane and plate capacitance. Design/methodology/approach With regard to this problem, this paper presents a flexible tactile-pressure sensor based on hyper-elastics PDMS and plate capacitance. The sensor has a size of 10 mm × 10 mm × 1.3 mm and is composed of four upper electrodes, one middle driving electrode and one lower electrode. The authors first analyzed the structure and the tactile-pressure sensing principle of human skin to obtain the design parameters of the sensor. Then they presented the working principle, material selection and mechanical structure design and fabrication process of the sensor. The authors also fabricated several sample devices of the sensor and carried out experiments to establish the relationship between the sensor output and the pressure. Findings The results show that the tactile part of the sensor can measure a range of 0.05-1N/mm2 micro pressure with a sensitivity of 2.93 per cent/N and a linearity of 0.03 per cent. The pressure part of the sensor can measure a range of 1-30N/mm2 pressure with a sensitivity of 0.08 per cent/N and a linearity of 0.07 per cent. Originality/value This paper analyzes the tactile and pressure sensing principles of human skin and develop an intelligent sensitive human-skin-like tactile-pressure sensor for intelligent robot perception systems. The sensor can achieve to imitate the tactile and pressure function simultaneously with a measurement resolution of 0.01 N and a spatial resolution of 2 mm.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4927
Author(s):  
Xin Cheng ◽  
Jitendra Dash ◽  
Dinusha Gunawardena ◽  
Lin Htein ◽  
Hwa-Yaw Tam

A simple, compact, and highly sensitive gas pressure sensor based on a Fabry–Perot interferometer (FPI) with a silicone rubber (SR) diaphragm is demonstrated. The SR diaphragm is fabricated on the tip of a silica tube using capillary action followed by spin coating. This process ensures uniformity of its inner surface along with reproducibility. A segment of single mode fiber (SMF) inserted into this tube forms the FPI which produces an interference pattern with good contrast. The sensor exhibits a high gas pressure sensitivity of −0.68 nm/kPa along with a low temperature cross-sensitivity of ≈ 1.1 kPa/°C.


Sign in / Sign up

Export Citation Format

Share Document