Compare of Two Intrinsic Fabry-Perot Interferometric Fiber Pressure Sensor Structures

2013 ◽  
Vol 336-338 ◽  
pp. 269-272
Author(s):  
Ning Wang ◽  
Xiao Xia Li

The pressure responding theoretical models are got for two intrinsic Fabry-Perot interferometric fiber pressure sensors fabricated by single mode and multimode fibers with different diameters. The pressure response curves are simulated by Matlab programs. The analysis showed that the sensitivity changing situation is different for two structures. The big size structure has a critical point of sensitivity. Higher sensitivity can be got by two structures, but the small size structure is more attractive than the big size structure.

2013 ◽  
Vol 331 ◽  
pp. 303-306
Author(s):  
Ning Wang ◽  
Jian Bo Fu ◽  
Xiao Xia Li

The theoretical model is got for a new intrinsic Fabry-Perot interferometric fiber pressure sensor structure fabricated by single mode and multimode fibers with different diameters. The pressure response curves are simulated by Matlab software. The analysis results showed that the pressure sensitivity decreased with the diameter of multimode fiber increased at some area, but the sensitivity begins to increase when the diameter value is more than critical point. The high sensitivity can be still got by increasing fiber diameter.


Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 31
Author(s):  
Xiaokang Song ◽  
Liangtao Hou ◽  
Xiangyu Wei ◽  
Hang Su ◽  
Chang Li ◽  
...  

A high sensitivity optical fiber gas pressure sensor based on paralleled Fabry–Pérot interferometers (FPIs) was demonstrated. One micro-cavity FPI is used as a reference FPI (FPI-1) to generate a Vernier effect and the other FPI (FPI-2) is used as a sensing tip. Both FPIs are connected by a 3-dB coupler to form a paralleled structure. The FPI-1 was fabricated by fusion splicing a piece of hollow core fiber (HCF) between two sections of single-mode fibers (SMF), whereas FPI-2 was formed by fusion splicing a section of HCF between SMF and a piece of HCF with a slightly smaller inner diameter for sensing pressure. The gas pressure sensitivity was amplified from 4 nm/MPa of single FPI to 45.76 nm/MPa of paralleled FPIs with an amplification factor of 11.44 and a linearity of 99.9%. Compared with the traditional fiber gas pressure sensors, the proposed sensor showed great advantages in sensitivity, mechanical strength, cost, and temperature influence resistant, which has potential in adverse-circumstance gas pressure sensing.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 581
Author(s):  
Yanan Zhang ◽  
Shubin Zhang ◽  
Haitao Gao ◽  
Danping Xu ◽  
Zhuozhen Gao ◽  
...  

This paper proposes a Fabry–Perot pressure sensor based on AB epoxy adhesive with ultra-high sensitivity under low pressure. Fabry–Perot interference, located between single-mode fiber (SMF) and hollow-core fiber (HCF), is an ultra-thin AB epoxy film formed by capillary action. Then the thick HCF was used to fix the HCF and SMF at both ends with AB epoxy adhesive. Experimental results show that when the thickness of AB epoxy film is 8.74 μm, and the cavity length is 30 μm, the sensor has the highest sensitivity. The sensitivity is 257.79 nm/MPa within the pressure range of 0–70 kPa. It also investigated the influence of the curing time of AB epoxy on the interference spectrum. Experiments showed that the interference spectrum peak is blue-shifted with the increase of curing time. Our study also demonstrated the humidity stability of this pressure sensor. These characteristics mean that our sensor has potential applications in the biomedical field and ocean exploration.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Huixin Zhang ◽  
Jia Liu ◽  
Jiashun Li ◽  
Pinggang Jia ◽  
Fei Feng ◽  
...  

A novel all-silica fiber optic Fabry-Perot (FP) pressure sensor with pressure leading-in tube based on microbubble structure is developed and experimentally demonstrated. The FP cavity is formed by fixing the end face of the single-mode fiber (SMF) parallel to the outer surface of the microbubble, in which the microbubble with a diameter of about 318 μm is constructed at the end of silica hollow tube. When external pressure is transmitted on the inner surface of the microbubble by the pressure leading-in tube, the FP cavity length changes with the diameter of microbubble. Experimental results show that such a sensor has a linear sensitivity of approximately 4.84 nm/MPa at room temperature over the pressure range of 1.1 MPa; the sensor has a very low temperature coefficient of approximately 2 pm/°C from room temperature to 600°C. The sensor has advantages of extremely low temperature coefficient, compact structure, and small size, which has potential applications for measuring pressure in high-temperature environment.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4927
Author(s):  
Xin Cheng ◽  
Jitendra Dash ◽  
Dinusha Gunawardena ◽  
Lin Htein ◽  
Hwa-Yaw Tam

A simple, compact, and highly sensitive gas pressure sensor based on a Fabry–Perot interferometer (FPI) with a silicone rubber (SR) diaphragm is demonstrated. The SR diaphragm is fabricated on the tip of a silica tube using capillary action followed by spin coating. This process ensures uniformity of its inner surface along with reproducibility. A segment of single mode fiber (SMF) inserted into this tube forms the FPI which produces an interference pattern with good contrast. The sensor exhibits a high gas pressure sensitivity of −0.68 nm/kPa along with a low temperature cross-sensitivity of ≈ 1.1 kPa/°C.


2020 ◽  
pp. 30-43
Author(s):  
M. I. Belovolov ◽  
S. O. Kozelskaya ◽  
O. N. Budadin ◽  
V. Yu. Kutyurin

An analytical review of physically possible methods and available achievements in registering hydrostatic pressure or mechanical stresses using fiber optic fibers and sensors based on them based on published works that can be used in harsh environmental conditions is carried out. The results of the review show that fully distributed or quasidistributed fiber-optic systems for recording hydrostatic pressure or mechanical stress can be implemented on the following physical principles and apparatus with measures to compensate or suppress the influence of temperature: polarizing sensors on birefringent single- mode light guides and OTDR equipment; micro-flexible sensors with OTDR equipment on conventional multimode fibers; measuring systems on fiber Bragg gratings; on discrete sensors, in particular, on sealed fiber Fabry–Perot interferometers; Brillouin distributed sensors on single-mode fibers that are not sensitive to temperature changes. It is shown that single-mode birefringent fibers with hollow holes in the shell and fiber Bragg gratings written in the core have a good linear sensitivity to hydrostatic pressure and a weak dependence on temperature. Lattices in phosphorous-containing single-mode light guides have increased high-temperature properties up to ~500 C and higher. A number of discrete fiber sensors’ structures and pressure recorders are investigated. Various structures of sensitive elements of pressure sensors on sealed fiber Fabry–Perot interferometers and fiber gratings in spherical and cylindrical small-sized cases are investigated. Sensors based on Fabry–Perot fiber interferometers soldered into a glass capillary and protected from water by external high-temperature hermetic coatings showed good linearity in the pressure range of 0…540 ATM at temperatures up to ~200 C. The sensors are efficient at temperatures up to 600 °C and are promising for use in severe and special external conditions. The possibility of compensating the temperature sensitivity by selecting external coatings is shown. Pressure sensors were tested on local areas with microbends and it was shown that they can measure pressures up to ~24 МPа at temperatures up to ~450 C, but to compensate for the dependence of the readings on temperature, it must be measured by an independent sensor. The possibility of independent and simultaneous measurement of hydrostatic pressure and temperature along a single fiber using spontaneous Brillouin scattering is shown. Pressure is measured by the frequency shift of Brillouin scattering, and temperature by its intensity. The operation of the Brillouin recorder in the pressure range 0…34 MРа is demonstrated. The pressure resolution was ~0,2 МРа. New methods are proposed for detecting Brillouin scattering – a heterodyne signal with a high signal-to-noise ratio and based on frequency modulation of a semiconductor single-frequency distributed feedback laser. The measurement range has been increased by more than 10 km and the coordinate resolution has been increased. The Brillouin scattering method is promising for creating distributed systems for measuring hydrostatic pressure or mechanical stress for severe physical conditions, including temperatures of ≥3000 C.


2020 ◽  
Vol 8 (4) ◽  
pp. 296-307
Author(s):  
Konstantin Krestovnikov ◽  
Aleksei Erashov ◽  
Аleksandr Bykov

This paper presents development of pressure sensor array with capacitance-type unit sensors, with scalable number of cells. Different assemblies of unit pressure sensors and their arrays were considered, their characteristics and fabrication methods were investigated. The structure of primary pressure transducer (PPT) array was presented; its operating principle of array was illustrated, calculated reference ratios were derived. The interface circuit, allowing to transform the changes in the primary transducer capacitance into voltage level variations, was proposed. A prototype sensor was implemented; the dependency of output signal power from the applied force was empirically obtained. In the range under 30 N it exhibited a linear pattern. The sensitivity of the array cells to the applied pressure is in the range 134.56..160.35. The measured drift of the output signals from the array cells after 10,000 loading cycles was 1.39%. For developed prototype of the pressure sensor array, based on the experimental data, the average signal-to-noise ratio over the cells was calculated, and equaled 63.47 dB. The proposed prototype was fabricated of easily available materials. It is relatively inexpensive and requires no fine-tuning of each individual cell. Capacitance-type operation type, compared to piezoresistive one, ensures greater stability of the output signal. The scalability and adjustability of cell parameters are achieved with layered sensor structure. The pressure sensor array, presented in this paper, can be utilized in various robotic systems.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4419
Author(s):  
Ting Li ◽  
Haiping Shang ◽  
Weibing Wang

A pressure sensor in the range of 0–120 MPa with a square diaphragm was designed and fabricated, which was isolated by the oil-filled package. The nonlinearity of the device without circuit compensation is better than 0.4%, and the accuracy is 0.43%. This sensor model was simulated by ANSYS software. Based on this model, we simulated the output voltage and nonlinearity when piezoresistors locations change. The simulation results showed that as the stress of the longitudinal resistor (RL) was increased compared to the transverse resistor (RT), the nonlinear error of the pressure sensor would first decrease to about 0 and then increase. The theoretical calculation and mathematical fitting were given to this phenomenon. Based on this discovery, a method for optimizing the nonlinearity of high-pressure sensors while ensuring the maximum sensitivity was proposed. In the simulation, the output of the optimized model had a significant improvement over the original model, and the nonlinear error significantly decreased from 0.106% to 0.0000713%.


Nanoscale ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 6076-6086
Author(s):  
Gen-Wen Hsieh ◽  
Shih-Rong Ling ◽  
Fan-Ting Hung ◽  
Pei-Hsiu Kao ◽  
Jian-Bin Liu

Zinc oxide tetrapod is introduced for the first time within a poly(dimethylsiloxane) dielectric matrix for the formation of ultrasensitive piezocapacitive pressure sensors.


Sign in / Sign up

Export Citation Format

Share Document