scholarly journals Cascaded-Cavity Fabry-Perot Interferometric Gas Pressure Sensor based on Vernier Effect

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3677 ◽  
Author(s):  
Peng Chen ◽  
Yutang Dai ◽  
Dongsheng Zhang ◽  
Xiaoyan Wen ◽  
Minghong Yang

An extrinsic Fabry-Perot interferometer (EFPI) composed of double fiber FP cavities in a glass capillary tube to generate Vernier effect has been fabricated and employed for gas pressure sensing. A lead-in single-mode fiber (LSMF) and a reflective single-mode fiber (RSMF) were inserted into the capillary tube to form a FP cavity. Femtosecond (fs) laser was used to ablate openings on a capillary tube for gas passage to the FP cavity. A fusion hole was also drilled on the end face of a SMF by fs laser. The sensitivity of the sensor is enhanced due to Vernier effect. Experimental results show that the sensitivity was as high as 86.64 nm/MPa in the range of 0~0.6 MPa, which is 32.8 times larger than that of an open-cavity EFPI sensor without Vernier effect. The temperature cross-sensitivity of the sensor was measured to be about 5.18 KPa/°C. The proposed sensor was characterized by its high sensitivity, compact structure and ease of fabrication, and would have extensive application prospects in gas sensing fields.

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1819 ◽  
Author(s):  
Zhoubing Li ◽  
Yue Zhang ◽  
Chunqiao Ren ◽  
Zhengqi Sui ◽  
Jin Li

In this paper, a miniature Fabry-Perot temperature probe was designed by using polydimethylsiloxane (PDMS) to encapsulate a microfiber in one cut of hollow core fiber (HCF). The microfiber tip and a common single mode fiber (SMF) end were used as the two reflectors of the Fabry-Perot interferometer. The temperature sensing performance was experimentally demonstrated with a sensitivity of 11.86 nm/°C and an excellent linear fitting in the range of 43–50 °C. This high sensitivity depends on the large thermal-expansion coefficient of PDMS. This temperature sensor can operate no higher than 200 °C limiting by the physicochemical properties of PDMS. The low cost, fast fabrication process, compact structure and outstanding resolution of less than 10−4 °C enable it being as a promising candidate for exploring the temperature monitor or controller with ultra-high sensitivity and precision.


Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 31
Author(s):  
Xiaokang Song ◽  
Liangtao Hou ◽  
Xiangyu Wei ◽  
Hang Su ◽  
Chang Li ◽  
...  

A high sensitivity optical fiber gas pressure sensor based on paralleled Fabry–Pérot interferometers (FPIs) was demonstrated. One micro-cavity FPI is used as a reference FPI (FPI-1) to generate a Vernier effect and the other FPI (FPI-2) is used as a sensing tip. Both FPIs are connected by a 3-dB coupler to form a paralleled structure. The FPI-1 was fabricated by fusion splicing a piece of hollow core fiber (HCF) between two sections of single-mode fibers (SMF), whereas FPI-2 was formed by fusion splicing a section of HCF between SMF and a piece of HCF with a slightly smaller inner diameter for sensing pressure. The gas pressure sensitivity was amplified from 4 nm/MPa of single FPI to 45.76 nm/MPa of paralleled FPIs with an amplification factor of 11.44 and a linearity of 99.9%. Compared with the traditional fiber gas pressure sensors, the proposed sensor showed great advantages in sensitivity, mechanical strength, cost, and temperature influence resistant, which has potential in adverse-circumstance gas pressure sensing.


2019 ◽  
Vol 37 (14) ◽  
pp. 3444-3451 ◽  
Author(s):  
Zhe Li ◽  
Yan-Xin Zhang ◽  
Wei-Gang Zhang ◽  
Ling-Xin Kong ◽  
Tie-Yi Yan ◽  
...  

Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 555 ◽  
Author(s):  
Lu Yan ◽  
Zhiguo Gui ◽  
Guanjun Wang ◽  
Yongquan An ◽  
Jinyu Gu ◽  
...  

A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry–Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/μϵ.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 358 ◽  
Author(s):  
Shubin Zhang ◽  
Zhenjun Shao ◽  
Jinrong Liu ◽  
Meixue Zong ◽  
Jian Shen ◽  
...  

A pressure-assisted arc discharge method of preparing silicon microbubbles with a glass tube was utilized for decreasing the bubble film’s thickness and improving the bubble’s uniformity. By controlling the arc discharge intensity, discharge time and the position of the fiber carefully, the thickness of the microbubble film was reduced to the micrometer scale. Later, the thin film of the microbubble was transferred to the end the single-mode-fiber/glass-tube structure, for forming the FP (Fabry–Perot) interference cavity. As the thin film is sensitive to the outer pressure, such a configuration could be used for a high-sensitive-pressure measurement. Experimental results show that the sensitivity of this FP (Fabry–Perot) cavity was 6790 pm/MPa when the outer pressure ranges from 100 to 1600 kPa, and the relationship between the structural parameters of the thin film and the outer pressure was theoretically analyzed. Moreover, this special structure made of the end silicon film microbubble is more suitable for high-sensitivity applications.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 581
Author(s):  
Yanan Zhang ◽  
Shubin Zhang ◽  
Haitao Gao ◽  
Danping Xu ◽  
Zhuozhen Gao ◽  
...  

This paper proposes a Fabry–Perot pressure sensor based on AB epoxy adhesive with ultra-high sensitivity under low pressure. Fabry–Perot interference, located between single-mode fiber (SMF) and hollow-core fiber (HCF), is an ultra-thin AB epoxy film formed by capillary action. Then the thick HCF was used to fix the HCF and SMF at both ends with AB epoxy adhesive. Experimental results show that when the thickness of AB epoxy film is 8.74 μm, and the cavity length is 30 μm, the sensor has the highest sensitivity. The sensitivity is 257.79 nm/MPa within the pressure range of 0–70 kPa. It also investigated the influence of the curing time of AB epoxy on the interference spectrum. Experiments showed that the interference spectrum peak is blue-shifted with the increase of curing time. Our study also demonstrated the humidity stability of this pressure sensor. These characteristics mean that our sensor has potential applications in the biomedical field and ocean exploration.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4989
Author(s):  
Ping Xia ◽  
Yuegang Tan ◽  
Caixia Yang ◽  
Zude Zhou ◽  
Kang Yun

In this paper, an optical fiber composite Fabry-Perot interferometric (CFPI) sensor capable of simultaneous measurement of high temperature and strain is presented. The CFPI sensor consists of a silica-cavity intrinsic Fabry–Perot interferometer (IFPI) cascading an air-cavity extrinsic Fabry–Perot interferometer (EFPI). The IFPI is constructed at the end of the transmission single-mode fiber (SMF) by splicing a short piece of photonic crystal fiber (PCF) to SMF and then the IFPI is inserted into a quartz capillary with a reflective surface to form a single-ended sliding EFPI. In such a configuration, the IFPI is only sensitive to temperature and the EFPI is sensitive to strain, which allows the achieving of temperature-compensated strain measurement. The experimental results show that the proposed sensor has good high-temperature resistance up to 1000 °C. Strain measurement under high temperatures is demonstrated for high-temperature suitability and stable strain response. Featuring intrinsic safety, compact structure and small size, the proposed CFPI sensor may find important applications in the high-temperature harsh environment.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4927
Author(s):  
Xin Cheng ◽  
Jitendra Dash ◽  
Dinusha Gunawardena ◽  
Lin Htein ◽  
Hwa-Yaw Tam

A simple, compact, and highly sensitive gas pressure sensor based on a Fabry–Perot interferometer (FPI) with a silicone rubber (SR) diaphragm is demonstrated. The SR diaphragm is fabricated on the tip of a silica tube using capillary action followed by spin coating. This process ensures uniformity of its inner surface along with reproducibility. A segment of single mode fiber (SMF) inserted into this tube forms the FPI which produces an interference pattern with good contrast. The sensor exhibits a high gas pressure sensitivity of −0.68 nm/kPa along with a low temperature cross-sensitivity of ≈ 1.1 kPa/°C.


Sign in / Sign up

Export Citation Format

Share Document