scholarly journals Silicone Rubber Based Highly Sensitive Fiber-Optic Fabry–Perot Interferometric Gas Pressure Sensor

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4927
Author(s):  
Xin Cheng ◽  
Jitendra Dash ◽  
Dinusha Gunawardena ◽  
Lin Htein ◽  
Hwa-Yaw Tam

A simple, compact, and highly sensitive gas pressure sensor based on a Fabry–Perot interferometer (FPI) with a silicone rubber (SR) diaphragm is demonstrated. The SR diaphragm is fabricated on the tip of a silica tube using capillary action followed by spin coating. This process ensures uniformity of its inner surface along with reproducibility. A segment of single mode fiber (SMF) inserted into this tube forms the FPI which produces an interference pattern with good contrast. The sensor exhibits a high gas pressure sensitivity of −0.68 nm/kPa along with a low temperature cross-sensitivity of ≈ 1.1 kPa/°C.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3677 ◽  
Author(s):  
Peng Chen ◽  
Yutang Dai ◽  
Dongsheng Zhang ◽  
Xiaoyan Wen ◽  
Minghong Yang

An extrinsic Fabry-Perot interferometer (EFPI) composed of double fiber FP cavities in a glass capillary tube to generate Vernier effect has been fabricated and employed for gas pressure sensing. A lead-in single-mode fiber (LSMF) and a reflective single-mode fiber (RSMF) were inserted into the capillary tube to form a FP cavity. Femtosecond (fs) laser was used to ablate openings on a capillary tube for gas passage to the FP cavity. A fusion hole was also drilled on the end face of a SMF by fs laser. The sensitivity of the sensor is enhanced due to Vernier effect. Experimental results show that the sensitivity was as high as 86.64 nm/MPa in the range of 0~0.6 MPa, which is 32.8 times larger than that of an open-cavity EFPI sensor without Vernier effect. The temperature cross-sensitivity of the sensor was measured to be about 5.18 KPa/°C. The proposed sensor was characterized by its high sensitivity, compact structure and ease of fabrication, and would have extensive application prospects in gas sensing fields.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 581
Author(s):  
Yanan Zhang ◽  
Shubin Zhang ◽  
Haitao Gao ◽  
Danping Xu ◽  
Zhuozhen Gao ◽  
...  

This paper proposes a Fabry–Perot pressure sensor based on AB epoxy adhesive with ultra-high sensitivity under low pressure. Fabry–Perot interference, located between single-mode fiber (SMF) and hollow-core fiber (HCF), is an ultra-thin AB epoxy film formed by capillary action. Then the thick HCF was used to fix the HCF and SMF at both ends with AB epoxy adhesive. Experimental results show that when the thickness of AB epoxy film is 8.74 μm, and the cavity length is 30 μm, the sensor has the highest sensitivity. The sensitivity is 257.79 nm/MPa within the pressure range of 0–70 kPa. It also investigated the influence of the curing time of AB epoxy on the interference spectrum. Experiments showed that the interference spectrum peak is blue-shifted with the increase of curing time. Our study also demonstrated the humidity stability of this pressure sensor. These characteristics mean that our sensor has potential applications in the biomedical field and ocean exploration.


Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 31
Author(s):  
Xiaokang Song ◽  
Liangtao Hou ◽  
Xiangyu Wei ◽  
Hang Su ◽  
Chang Li ◽  
...  

A high sensitivity optical fiber gas pressure sensor based on paralleled Fabry–Pérot interferometers (FPIs) was demonstrated. One micro-cavity FPI is used as a reference FPI (FPI-1) to generate a Vernier effect and the other FPI (FPI-2) is used as a sensing tip. Both FPIs are connected by a 3-dB coupler to form a paralleled structure. The FPI-1 was fabricated by fusion splicing a piece of hollow core fiber (HCF) between two sections of single-mode fibers (SMF), whereas FPI-2 was formed by fusion splicing a section of HCF between SMF and a piece of HCF with a slightly smaller inner diameter for sensing pressure. The gas pressure sensitivity was amplified from 4 nm/MPa of single FPI to 45.76 nm/MPa of paralleled FPIs with an amplification factor of 11.44 and a linearity of 99.9%. Compared with the traditional fiber gas pressure sensors, the proposed sensor showed great advantages in sensitivity, mechanical strength, cost, and temperature influence resistant, which has potential in adverse-circumstance gas pressure sensing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josu Amorebieta ◽  
Angel Ortega-Gomez ◽  
Gaizka Durana ◽  
Rubén Fernández ◽  
Enrique Antonio-Lopez ◽  
...  

AbstractWe propose and demonstrate a compact and simple vector bending sensor capable of distinguishing any direction and amplitude with high accuracy. The sensor consists of a short segment of asymmetric multicore fiber (MCF) fusion spliced to a standard single mode fiber. The reflection spectrum of such a structure shifts and shrinks in specific manners depending on the direction in which the MCF is bent. By monitoring simultaneously wavelength shift and light power variations, the amplitude and bend direction of the MCF can be unmistakably measured in any orientation, from 0° to 360°. The bending sensor proposed here is highly sensitive even for small bending angles (below 1°).


2016 ◽  
Vol 8 (5) ◽  
pp. 1-8 ◽  
Author(s):  
Jia Shi ◽  
Yuye Wang ◽  
Degang Xu ◽  
Yixin He ◽  
Junfeng Jiang ◽  
...  

2020 ◽  
Author(s):  
N.A. Mustaffa ◽  
M.R. Mokhtar ◽  
M.F. Azman ◽  
Z. Yusoff ◽  
H.A. Abdul Rashid ◽  
...  

2012 ◽  
Vol 19 (2) ◽  
pp. 64-70 ◽  
Author(s):  
Hisham Kadhum Hisham ◽  
Ahmad Fauzi Abas ◽  
Ghafour Amouzad Mahdiraji ◽  
Mohd Adzir Mahdi ◽  
Ahmad Shukri Muhammad Noor

Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 521 ◽  
Author(s):  
Yuan ◽  
Qian ◽  
Liu ◽  
Wang ◽  
Yu

Here we report on a miniaturized optical interferometer in one fiber based on two mismatched nodes. The all-fiber structure shows stable performance of temperature and humidity sensing. For temperature sensing in large ranges, from 40 to 100 °C, the sensor has a sensitivity of 0.24 dB/°C, and the adjusted R-squared value of fitting result reaches 0.99461 which shows a reliable sensing result. With carbon nanotubes coating the surface of the fiber, the temperature sensitivity is enhanced from 0.24561 to 1.65282 dB/°C in a small region, and the performance of humidity sensing becomes more linear and applicable. The adjusted R-squared value of the linear fitting line for humidity sensing shows a dramatic increase from 0.71731 to 0.92278 after carbon nanotube coating, and the humidity sensitivity presents 0.02571 nm/%RH.


2019 ◽  
Vol 90 (2) ◽  
pp. 025005 ◽  
Author(s):  
L. Zhang ◽  
Y. Jiang ◽  
H. Gao ◽  
J. Jia ◽  
Y. Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document