scholarly journals Cutin Synthesis in Developing, Field-Grown Apple Fruit Examined by External Feeding of Labelled Precursors

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 497
Author(s):  
Yiru Si ◽  
Bishnu P. Khanal ◽  
Leopold Sauheitl ◽  
Moritz Knoche

An intact skin is essential in high-quality apples. Ongoing deposition of cuticular material during fruit development may decrease microcracking. Our objective was to establish a system for quantifying cutin and wax deposition in developing apple fruit. Oleic acid (13C and 14C labelled) and palmitic acid (14C labelled) were fed to developing apples and the amounts incorporated in the cutin and wax fractions were quantified. The incorporation of 14C oleic acid (C18) was significantly higher than that of 14C palmitic acid (C16) and the incorporation in the cutin fraction exceeded that in the wax fraction. The amount of precursor incorporated in the cutin increased asymptotically with time, but the amount in the wax fraction remained about constant. Increasing the concentration of the precursor applied generally increased incorporation. Incorporation in the cutin fraction was high during early development (43 days after full bloom) and decreased towards maturity. Incorporation was higher from a dilute donor solution (infinite dose feeding) than from a donor solution subjected to drying (finite dose feeding) or from perfusion of the precursor by injection. Feeding the skin of a developing apple with oleic acid resulted in significant incorporation in the cutin fraction under both laboratory and field conditions.

2011 ◽  
Vol 136 (3) ◽  
pp. 159-164 ◽  
Author(s):  
Moritz Knoche ◽  
Bishnu P. Khanal ◽  
Matej Stopar

The effect of four applications of gibberellin A4+7 [GA4+7 (10 mg·L−1 at 10-day intervals beginning with petal fall)] on water-induced russeting, formation of microcracks. and on fruit growth and deposition of the cuticular membrane (CM) was studied in developing ‘Golden Delicious’ fruit (Malus ×domestica Borkh.). Submerging developing apple fruit in deionized water for 48 h induced russeting in untreated control but not in GA4+7-treated fruit. Immersing in water during early fruit development, 19 days after full bloom (19 DAFB), resulted in more russeting than immersions occurring later (139 DAFB). Water on the outer surface of epidermal segments increased the frequency of microscopic cracks in untreated controls but to a lesser degree in GA4+7-treated fruit. The effect of GA4+7 on water-induced russeting and formation of microcracks was larger during early as compared with later stages of fruit development. Fruit treated with GA4+7 consistently had fewer microcracks as compared with non-treated control fruit. GA4+7 had no effect on amounts or rates of cutin or wax deposition, strain, or mechanical properties of the CM as compared with the non-treated control. Thus, the decrease in russeting and formation of microcracks in the cuticle of GA4+7-treated fruit must be accounted for effects on underlying epi- and hypodermal tissues.


2006 ◽  
Vol 141 (3) ◽  
pp. 811-824 ◽  
Author(s):  
Sunchung Park ◽  
Nobuko Sugimoto ◽  
Matthew D. Larson ◽  
Randy Beaudry ◽  
Steven van Nocker

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
G Dionne ◽  
A J Watson ◽  
D H Betts ◽  
B A Rafea

Abstract Study question Our objective is determining whether supplementing embryo culture media with palmitic acid and/or oleic acid impacts Nrf2/Keap1 antioxidant response pathways during preimplantation mouse embryo development. Summary answer Supplementation of embryo culture media with palmitic acid increases cellular Nrf2 levels per embryo after 48-hour culture, while oleic acid reverses this effect. What is known already Obese women experience higher incidence of infertility than women with healthy BMIs. The obese reproductive tract environment supporting preimplantation embryo development is likely to include enhanced free fatty acid (FFA) levels and increased accumulation of reactive oxygen species. Exposure to palmitic acid (PA) in vitro significantly impairs mouse embryo development while increasing ER stress mRNAs. Oleic acid (OA) reverses these effects. To further define effects of FFA exposure, we are characterizing the influence of FFAs on the Nrf2–Keap1 pathway and its downstream antioxidant defense systems. We hypothesize that PA treatment induces Nrf2-Keap1 activity, while OA treatment alleviates pathway activity. Study design, size, duration Female CD–1 mice (4–6 weeks) were super-ovulated via intraperitoneal injections of PMSG, followed 48 hours later by hCG. Female mice were mated with male CD–1 mice (6–8 months) overnight. Females were euthanized using CO2 and two-cell embryos were collected by flushing oviducts. Two-cell embryos were placed into KSOMaa-based treatment groups: 1) BSA (control); 2) 100µM PA; 3) 100µM OA; 4) 100µM PA+OA, and cultured for 48 hours (37 °C; 5% O2, 5% CO2, 90% N2). Participants/materials, setting, methods After 48-hour embryo culture, developmental stages of all mouse embryos were recorded. Immunofluorescence analysis of Nrf2 and Keap1 localization was performed for embryo treatments (BSA, 100µM PA, 100µM OA & 100µM PA+OA) using rabbit polyclonal anti-Nrf2 antibody, with Rhodamine-Phalloidin and DAPI staining. Embryos were imaged using confocal microscopy and Nrf2-positive cells were counted using ImageJ. Nrf2 and Keap1 mRNA abundances were assessed after culture in each treatment condition using RT-qPCR and the delta-delta Ct method. Main results and the role of chance Inclusion of 100µM PA in embryo culture significantly decreased blastocyst development frequency from 70.06±16.38% in the BSA (control) group to 11.61±8.19% in the PA-treated group (p < 0.0001). Embryo culture with 100µM OA and 100µM PA+OA co-treatment did not significantly impair blastocyst development (OA: 61.59±8.07%, p = 0.4053; PA+OA: 63.53±7.63%, p = 0.6204). Embryo culture with PA treatment significantly increased the mean percentage of Nrf2-positive cells to 56.83±30.49% compared with 21.22±15.63% in the control group (p < 0.0001). Conversely, 100µM OA and 100µM PA+OA treatments did not significantly affect Nrf2-positive cell frequencies compared with the control group (OA: 33.28±21.83%, p = 0.1825; PA+OA: 34.84±12.66%, p = 0.0691). Immunofluorescence results show that treating embryos with 100µM PA for 48 hours results in increased levels of cellular Nrf2, while combining 100µM PA with 100µM OA reversed these effects. Preliminary qPCR analysis showed no significant differences in Nrf2 or Keap1 relative transcript abundance between any embryo treatment groups. Nrf2 and Keap1 mRNA levels were both higher after embryo culture with 100µM OA than all other culture groups (p = 0.6268; p = 0.3201). Notably, Keap1 relative transcript levels dropped to undetectable levels after culture with 100µM PA, which suggests an increase in Nrf2 activation.Limitations, reasons for caution: While immunofluorescence localization of Nrf2/Keap1 provides insight into how the proteins behave during preimplantation embryo development, confocal images cannot determine protein-protein interactions or activity levels. Similarly, transcript information from RT-qPCR analysis only provides information about Nrf2 and Keap1 at the transcript level. Nrf2 activity will be assessed via downstream targets. Wider implications of the findings: The Nrf2–Keap1 pathway coordinates numerous cellular defence mechanisms, and is implicated in various diseases, including cancer. Establishing an impact of free fatty acid exposure on Nrf2–Keap1 during preimplantation embryo development will provide valuable information regarding the effects of maternal obesity on outcomes for embryos produced from these patients. Trial registration number Not applicable


1981 ◽  
Vol 8 (2) ◽  
pp. 155 ◽  
Author(s):  
IB Ferguson ◽  
CB Watkins

Leakage of calcium, magnesium and potassium from discs of cortical apple fruit tissue was followed through fruit development and ripening. Leakage of potassium always exceeded that of calcium and magnesium and was little affected by the external presence of the divalent ions. Calcium and magnesium leakage was markedly increased by the external presence of either ion. In tissue from both freshly picked fruit and that taken from storage, potassium and magnesium leakage increased when the fruit was in an advanced state of senescence, but calcium leakage decreased. During fruit development, leakage of all cations was closely related to availability as expressed in tissue concentration. There was a marked increase in potassium leakage in association with the respiratory climacteric.


1999 ◽  
Vol 81 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Amanda E. Jones ◽  
Michael Stolinski ◽  
Ruth D. Smith ◽  
Jane L. Murphy ◽  
Stephen A. Wootton

The gastrointestinal handling and metabolic disposal of [1-13C]palmitic acid, [1-13C]stearic acid and [1-13C]oleic acid administered within a lipid–casein–glucose–sucrose emulsion were examined in normal healthy women by determining both the amount and nature of the13C label in stool and label excreted on breath as13CO2. The greatest excretion of13C label in stool was in the stearic acid trial (9.2 % of administered dose) whilst comparatively little label was observed in stool in either the palmitic acid (1.2 % of administered dose) or oleic acid (1.9 % of administered dose) trials. In both the palmitic acid and oleic acid trials, all of the label in stool was identified as being present in the form in which it was administered (i.e. [13C]palmitic acid in the palmitic acid trial and [13C]oleic acid in the oleic acid trial). In contrast, only 87 % of the label in the stool in the stearic acid trial was identified as [13C]stearic acid, the remainder was identified as [13C]palmitic acid which may reflect chain shortening of [1-13C]stearic acid within the gastrointestinal tract. Small, but statistically significant, differences were observed in the time course of recovery of13C label on breath over the initial 9 h of the study period (oleic acid = palmitic acid > stearic acid). However, when calculated over the 24 h study period, the recovery of the label as13CO2was similar in all three trials (approximately 25 % of absorbed dose). These results support the view that chain length and degree of unsaturation may influence the gastrointestinal handling and immediate metabolic disposal of these fatty acids even when presented within an emulsion.


2015 ◽  
Vol 36 (3) ◽  
pp. 852-865 ◽  
Author(s):  
Wiebke Gehrmann ◽  
Wiebke Würdemann ◽  
Thomas Plötz ◽  
Anne Jörns ◽  
Sigurd Lenzen ◽  
...  

Background/Aims: Elevated levels of non-esterified fatty acids (NEFAs) are under suspicion to mediate β-cell dysfunction and β-cell loss in type 2 diabetes, a phenomenon known as lipotoxicity. Whereas saturated fatty acids show a strong cytotoxic effect upon insulin-producing cells, unsaturated fatty acids are not toxic and can even prevent toxicity. Experimental evidence suggests that oxidative stress mediates lipotoxicity and there is evidence that the subcellular site of ROS formation is the peroxisome. However, the interaction between unsaturated and saturated NEFAs in this process is unclear. Methods: Toxicity of rat insulin-producing cells after NEFA incubation was measured by MTT and caspase assays. NEFA induced H2O2 formation was quantified by organelle specific expression of the H2O2 specific fluorescence sensor protein HyPer. Results: The saturated NEFA palmitic acid had a significant toxic effect on the viability of rat insulin-producing cells. Unsaturated NEFAs with carbon chain lengths >14 showed, irrespective of the number of double bonds, a pronounced protection against palmitic acid induced toxicity. Palmitic acid induced H2O2 formation in the peroxisomes of insulin-producing cells. Oleic acid incubation led to lipid droplet formation, but in contrast to palmitic acid induced neither an ER stress response nor peroxisomal H2O2 generation. Furthermore, oleic acid prevented palmitic acid induced H2O2 production in the peroxisomes. Conclusion: Thus unsaturated NEFAs prevent deleterious hydrogen peroxide generation during peroxisomal β-oxidation of long-chain saturated NEFAs in rat insulin-producing cells.


1976 ◽  
Vol 158 (3) ◽  
pp. 593-601 ◽  
Author(s):  
P G Roughan ◽  
C R Slack ◽  
R Holland

Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate.


2009 ◽  
Vol 5 (4) ◽  
pp. 685-698 ◽  
Author(s):  
V. Soglio ◽  
F. Costa ◽  
J. W. Molthoff ◽  
W. M. J. Weemen-Hendriks ◽  
H. J. Schouten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document