scholarly journals High rates of [1-14C]acetate incorporation into the lipid of isolated spinach chloroplasts

1976 ◽  
Vol 158 (3) ◽  
pp. 593-601 ◽  
Author(s):  
P G Roughan ◽  
C R Slack ◽  
R Holland

Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate.

1979 ◽  
Vol 184 (2) ◽  
pp. 193-202 ◽  
Author(s):  
P. Grattan Roughan ◽  
Ross Holland ◽  
C. Roger Slack

1. Chloroplasts isolated from spinach leaves by using the low-ionic-strength buffers of Nakatani & Barber [(1977) Biochim. Biophys. Acta.461, 510–512] had higher rates of HCO3−-dependent oxygen evolution (up to 369μmol/h per mg of chlorophyll) and higher rates of [1-14C]acetate incorporation into long-chain fatty acids (up to 1500nmol/h per mg of chlorophyll) than chloroplasts isolated by using alternative procedures. 2. Acetate appeared to be the preferred substrate for fatty acid synthesis by isolated chloroplasts, although high rates of synthesis were also measured from H14CO3− in assays permitting high rats of photosynthesis. Incorporation of H14CO3− into fatty acids was decreased by relatively low concentrations of unlabelled acetate. Acetyl-CoA synthetase activity was present 3–4 times in excess of that required to account for rates of [1-14C]acetate incorporation into fatty acids, but pyruvate dehydrogenase was either absent or present in very low activity in spinach chloroplasts. 3. Rates of long-chain-fatty acid synthesis from [1-14C]acetate in the highly active chloroplast preparations, compared with those used previously, were less dependent on added cofactors, but showed a greater response to light. The effects of added CoA plus ATP, Triton X-100 and sn-glycerol 3-phosphate on the products of [1-14C]acetate incorporation were similar to those reported for less active chloroplast preparations. 4. Endogenous [14C]acetyl-CoA plus [14C]malonyl-CoA was maintained at a constant low level even when fatty acid synthesis was limited by low HCO3− concentrations. Endogenous [14C]acyl-(acyl-carrier protein) concentrations increased with increasing HCO3− concentration and higher rates of fatty acid synthesis, but were slightly lower in the presence of Triton X-100. It is proposed that rates of long-chain-fatty acid synthesis in isolated chloroplasts at saturating [1-14C]acetate concentrations and optimal HCO3− concentrations may be primarily controlled by rates of removal of the products of the fatty acid synthetase.


1972 ◽  
Vol 128 (5) ◽  
pp. 1057-1067 ◽  
Author(s):  
E. D Saggerson

1. 0.5mm-Palmitate stimulated incorporation of [U-14C]glucose into glyceride glycerol and fatty acids in normal fat cells in a manner dependent upon the glucose concentration. 2. In the presence of insulin the incorporation of 5mm-glucose into glyceride fatty acids was increased by concentrations of palmitate, adrenaline and 6-N-2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate up to 0.5mm, 0.5μm and 0.5mm respectively. Higher concentrations of these agents produced progressive decreases in the rate of glucose incorporation into fatty acids. 3. The effects of palmitate and lipolytic agents upon the measured parameters of glucose utilization were similar, suggesting that the effects of lipolytic agents are mediated through increased concentrations of free fatty acids. 4. In fat cells from 24h-starved rats, maximal stimulation of glucose incorporation into fatty acids was achieved with 0.25mm-palmitate. Higher concentrations of palmitate were inhibitory. In fat cells from 72h-starved rats, palmitate only stimulated glucose incorporation into fatty acids at high concentrations of palmitate (1mm and above). 5. The ability of fat cells to incorporate glucose into glyceride glycerol in the presence of palmitate decreased with increasing periods of starvation. 6. It is suggested that low concentrations of free fatty acids stimulate fatty acid synthesis from glucose by increasing the utilization of ATP and cytoplasmic NADH for esterification of these free fatty acids. When esterification of free fatty acids does not keep pace with their provision, inhibition of fatty acid synthesis occurs. Provision of free fatty acids far in excess of the esterification capacity of the cells leads to uncoupling of oxidative phosphorylation and a secondary stimulation of fatty acid synthesis from glucose.


1962 ◽  
Vol 203 (2) ◽  
pp. 306-310 ◽  
Author(s):  
Martin E. Rothlin ◽  
Christine B. Rothlin ◽  
Vernon E. Wendt

The effect of the administration of norepinephrine, glucose and insulin, pentobarbital, and Hypertensin on the arterial concentration and composition of plasma free fatty acids (FFA) has been studied in man and dog. With a rise of the FFA concentration as produced by norepinephrine, the contribution of oleic acid to the total FFA increased, while that of stearic and palmitic acids decreased. The reverse changes in the FFA composition were observed when their arterial level fell under the influence of other agents studied. The FFA composition was dependent on the FFA concentration in arterial blood, but not on the experimental condition of the subject or animal at the time of analysis. At high FFA levels, the FFA composition approached that of depot fat.


Weed Science ◽  
1975 ◽  
Vol 23 (2) ◽  
pp. 90-92 ◽  
Author(s):  
R. E. Wilkinson ◽  
A. E. Smith

EPTC (S-ethyl dipropylthiocarbamate), 1,8-naphthalic anhydride (NA),N,N-dialryl-2,2-dichloroacetamide (R-25788),CDAA(N,N-diallyl-2-chloroacetamide) and CDEC (2-chloroallyl diethyldithiocarbamate) at concentrations of 10-5M inhibited the incorporation of acetate-1-14C (Ac∗) into fatty acids of isolated spinach (Spinacia oleraceaL.) chloroplasts. Lower concentrations of these chemicals did not affect acetate incorporation into fatty acids. However, the inhibition by EPTC at 10-5M was counteracted by NA and R-25788 [agriculturally important antidotes for EPTC injury to corn (Zea maysL.)] at 10-7M.


1985 ◽  
Vol 40 (11-12) ◽  
pp. 917-918 ◽  
Author(s):  
Uwe Homeyer ◽  
D. Schulze-Siebert ◽  
G. Schultz

Abstract In vitro incubation of intact spinach chloroplasts with 1 mᴍ Pyruvate was used to study the specificity of action of the herbicide Chlorsulfuron on the synthesis of valine, alanine and fatty acids. As a result, increasing concentrations of the herbicide strongly inhibited valine synthesis while fatty acid synthesis via pyruvate dehydrogenase complex (PDC) and alanine formation by transamination reaction was promoted.


1998 ◽  
Vol 53 (11-12) ◽  
pp. 995-1003 ◽  

Abstract Herbicidal chloroacetamides cause a very sensitive inhibition of fatty acid incorporation into an insoluble cell wall fraction of Scenedesmus acutus. The molecular basis was investigated in more detail. After incubation of the algae with [14C]oleic acid and saponification, the remaining pellet was solubilized and fractionated consecutively with chloroform / methanol, phosphate buffer, amylase, pronase, and finally with dioxane/HCl. By acid hydrolysis in dioxane a part of the cell wall residue was solubilized showing inhibition of exogenously applied oleic acid and other labelled precursors such as stearic acid, palmitic acid, and acetate. After extraction of this dioxane-soluble subfraction with hexane, HPLC could separate labelled metabolites less polar than oleic acid. T heir formation was completely inhibited by chloroacetam ides, e.g. 1 μᴍ metazachlor. This effect was also observed with the herbicidally active 5-enantiomer of metolachlor while the inactive R-enantiomer had no influence. These strongly inhibited metabolites could be characterized by radio-HPLC /MS as very long chain fatty acids (VLCFAs) with a carbon chain between 20 and 26. Incubating am etazachlor-resistant cell line of S. acutus (Mz-1) with [14C]oleic acid, V LCFA s could not be detected in the dioxane/ HCl-subfraction. Furthermore, comparing the presence of endogenous fatty acids in wildtype and mutant Mz-1 the VLCFA content of the mutant is very low, while the content of long chain fatty acids (C16 -18) is increased, particularly oleic acid. Obviously, the phytotoxicity of chloroacetam ides in S. acutus is due to inhibition of VLCFA synthesis. The resistance of the mutant to metazachlor has a bearing on the higher amount of long chain fatty acids replacing the missing VLCFAs in essential membranes or cell wall components.


1996 ◽  
Vol 316 (3) ◽  
pp. 847-852 ◽  
Author(s):  
Jennifer S. BRUCE ◽  
Andrew M. SALTER

Unlike other saturated fatty acids, dietary stearic acid does not appear to raise plasma cholesterol. The reason for this remains to be established, although it appears that it must be related to inherent differences in the metabolism of the fatty acid. In the present study, we have looked at the metabolism of palmitic acid and stearic acid, in comparison with oleic acid, by cultured hamster hepatocytes. Stearic acid was taken up more slowly and was poorly incorporated into both cellular and secreted triacylglycerol. Despite this, stearic acid stimulated the synthesis and secretion of triacylglycerol to the same extent as the other fatty acids. Incorporation into cellular phospholipid was lower for oleic acid than for palmitic acid and stearic acid. Desaturation of stearic acid, to monounsaturated fatty acid, was found to be greater than that of palmitic acid. Oleic acid produced from stearic acid was incorporated into both triacylglycerol and phospholipid, representing 13% and 6% respectively of the total after a 4 h incubation. Significant proportions of all of the fatty acids were oxidized, primarily to form ketone bodies, but by 8 h more oleic acid had been oxidized compared with palmitic acid and stearic acid.


2019 ◽  
Vol 70 (1) ◽  
pp. 288 ◽  
Author(s):  
H. Karaosmanoğlu ◽  
N. Ş. Üstün

In this study, the changes in fatty acid composition, peroxide number, free fatty acids, oleic acid/ linoleic acid (O/L) and iodine value (IV) were investigated during the traditional storage of hazelnuts. The samples were selected from Giresun Quality Tombul, Kara and Sivri hazelnut varieties with economical prescription. Samples were stored according to the conventional methods in external interference-free warehouses until the next harvest time. At the end of storage, the amount of oleic acid in all varieties increased while the amount of linoleic acid decreased. Even though an increase in the free fatty acids and peroxide number in all types of hazelnuts during storage was determined, the values were considerably lower than the rancidity limits at the end of the storage period. As a result of the study it was observed that the hazelnut shell is an important preservative during storage and that hazelnuts can be preserved until the next harvest period under simple storage conditions.


2014 ◽  
Vol 139 (4) ◽  
pp. 433-441 ◽  
Author(s):  
Geoffrey Meru ◽  
Cecilia McGregor

Seed oil percentage (SOP) and fatty acid composition of watermelon (Citrullus lanatus) seeds are important traits in Africa, the Middle East, and Asia where the seeds provide a significant source of nutrition and income. Oil yield from watermelon seed exceeds 50% (w/w) and is high in unsaturated fatty acids, a profile comparable to that of sunflower (Helianthus annuus) and soybean (Glycine max) oil. As a result of novel non-food uses of plant-derived oils, there is an increasing need for more sources of vegetable oil. To improve the nutritive value of watermelon seed and position watermelon as a potential oil crop, it is critical to understand the genetic factors associated with SOP and fatty acid composition. Although the fatty acid composition of watermelon seed is well documented, the underlying genetic basis has not yet been studied. Therefore, the current study aimed to elucidate the quality of watermelon seed oil and identify genomic regions and candidate genes associated with fatty acid composition. Seed from an F2 population developed from a cross between an egusi type (PI 560023), known for its high SOP, and Strain II (PI 279261) was phenotyped for palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). Significant (P < 0.05) correlations were found between palmitic and oleic acid (0.24), palmitic and linoleic acid (–0.37), stearic and linoleic acid (–0.21), and oleic and linoleic acid (–0.92). A total of eight quantitative trait loci (QTL) were associated with fatty acid composition with a QTL for oleic and linoleic acid colocalizing on chromosome (Chr) 6. Eighty genes involved in fatty biosynthesis including those modulating the ratio of saturated and unsaturated fatty acids were identified from the functionally annotated genes on the watermelon draft genome. Several fatty acid biosynthesis genes were found within and in close proximity to the QTL identified in this study. A gene (Cla013264) homolog to fatty acid elongase (FAE) was found within the 1.5-likelihood-odds (LOD) interval of the QTL for palmitic acid (R2 = 7.6%) on Chr 2, whereas Cla008157, a homolog to omega-3-fatty acid desaturase and Cla008263, a homolog to FAE, were identified within the 1.5-LOD interval of the QTL for palmitic acid (R2 = 24.7%) on Chr 3. In addition, the QTL for palmitic acid on Chr 3 was located ≈0.60 Mbp from Cla002633, a gene homolog to fatty acyl- [acyl carrier protein (ACP)] thioesterase B. A gene (Cla009335) homolog to ACP was found within the flanking markers of the QTL for oleic acid (R2 = 17.9%) and linoleic acid (R2 = 21.5%) on Chr 6, whereas Cla010780, a gene homolog to acyl-ACP desaturase was located within the QTL for stearic acid (R2 = 10.2%) on Chr 7. On Chr 8, another gene (Cla013862) homolog to acyl-ACP desaturase was found within the 1.5-LOD interval of the QTL for oleic acid (R2 = 13.5%). The genes identified in this study are possible candidates for the development of functional markers for application in marker-assisted selection for fatty acid composition in watermelon seed. To the best of our knowledge, this is the first study that aimed to elucidate genetic control of the fatty acid composition of watermelon seed.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Lei Zhu ◽  
Qi Zou ◽  
Xinyun Cao ◽  
John E. Cronan

ABSTRACTAcyl carrier proteins (ACPs) play essential roles in the synthesis of fatty acids and transfer of long fatty acyl chains into complex lipids. TheEnterococcus faecalisgenome contains two annotatedacpgenes, calledacpAandacpB. AcpA is encoded within the fatty acid synthesis (fab) operon and appears essential. In contrast, AcpB is an atypical ACP, having only 30% residue identity with AcpA, and is not essential. Deletion ofacpBhas no effect onE. faecalisgrowth orde novofatty acid synthesis in media lacking fatty acids. However, unlike the wild-type strain, where growth with oleic acid resulted in almost complete blockage ofde novofatty acid synthesis, theΔacpBstrain largely continuedde novofatty acid synthesis under these conditions. Blockage in the wild-type strain is due to repression offaboperon transcription, leading to levels of fatty acid synthetic proteins (including AcpA) that are insufficient to supportde novosynthesis. Transcription of thefaboperon is regulated by FabT, a repressor protein that binds DNA only when it is bound to an acyl-ACP ligand. Since AcpA is encoded in thefaboperon, its synthesis is blocked when the operon is repressed andacpAthus cannot provide a stable supply of ACP for synthesis of the acyl-ACP ligand required for DNA binding by FabT. In contrast to AcpA,acpBtranscription is unaffected by growth with exogenous fatty acids and thus provides a stable supply of ACP for conversion to the acyl-ACP ligand required for repression by FabT. Indeed,ΔacpBandΔfabTstrains have essentially the samede novofatty acid synthesis phenotype in oleic acid-grown cultures, which argues that neither strain can form the FabT-acyl-ACP repression complex. Finally, acylated derivatives of both AcpB and AcpA were substrates for theE. faecalisenoyl-ACP reductases and forE. faecalisPlsX (acyl-ACP; phosphate acyltransferase).IMPORTANCEAcpB homologs are encoded by many, but not all, lactic acid bacteria (Lactobacillales), including many members of the human microbiome. The mechanisms regulating fatty acid synthesis by exogenous fatty acids play a key role in resistance of these bacteria to those antimicrobials targeted at fatty acid synthesis enzymes. Defective regulation can increase resistance to such inhibitors and also reduce pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document