scholarly journals Effects of Elevated CO2 and Heat on Wheat Grain Quality

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1027
Author(s):  
Xizi Wang ◽  
Fulai Liu

Wheat is one of the most important staple foods in temperate regions and is in increasing demand in urbanizing and industrializing countries such as China. Enhancing yield potential to meet the population explosion around the world and maintaining grain quality in wheat plants under climate change are crucial for food security and human nutrition. Global warming resulting from greenhouse effect has led to more frequent occurrence of extreme climatic events. Elevated atmospheric CO2 concentration (eCO2) along with rising temperature has a huge impact on ecosystems, agriculture and human health. There are numerous studies investigating the eCO2 and heatwaves effects on wheat growth and productivity, and the mechanisms behind. This review outlines the state-of-the-art knowledge regarding the effects of eCO2 and heat stress, individually and combined, on grain yield and grain quality in wheat crop. Strategies to enhance the resilience of wheat to future warmer and CO2-enriched environment are discussed.

2020 ◽  
Vol 68 (12) ◽  
pp. 3711-3721 ◽  
Author(s):  
Markus Dier ◽  
Liane Hüther ◽  
Waltraud X. Schulze ◽  
Martin Erbs ◽  
Peter Köhler ◽  
...  

2021 ◽  
Vol 58 (04) ◽  
pp. 1141-1153
Author(s):  
Gul Roz Khan

Nitrogen use efficiency under flood irrigation system is generally low (30%) in field crops, which is one of the fundamental factors of high production cost in the developing countries. Optimum rate and timing of N-application is otherwise important to harvest good quality grain for backing in the recent climate change scenario. Optimum N-rate (NAR) corresponds with the application timing (NAT) has resulted in good quality grains. Aim of the study was to focus on spring wheat grain quality and N use efficiency (NUE) with NAR {i.e., 0, 100, 120, 140 and 160 kg ha-1) and NAT (i.e., 100% at sowing (NAR1), 50% at sowing and 50% at tillering (NAT2), 25% at sowing, 50% at tillering and 25% at booting (NAT3) and 25% at sowing, 25% at tillering and 50% at booting (NAT4)}. Treatment impacts were investigated focusing grain yield, grain-N, and quality parameters (i.e., crude protein, gluten, amylose and amylopectin). Experiment was a randomized complete block, in three replications, conducted at Agronomy Res. Farm of the University of Agric. Peshawar in 2016-17 and repeated in 2017-18. Results showed the highest NUE in100 kg N ha-1, followed by a decreasing rate (p<0.05) for every next N-increment. While averaged on N-rates, the highest NUE observed in NAT3 which did not differ fromNAT4 but decreased (p<0.05) for treatment NAT2 with lowest for theNAT1. Pakhtunkhuwa-2015 showed higher NUE among the varieties. Grain-N, grain yield, gluten and amylose did not differ with NAR 140 and 160 kg ha-1 as well as for the NAT3 and NAT4 but decreased for NAT2 and the lowest was noted for NAT1. The N-content of wheat grain was highest in Pakhtunkhuwa-2015, followed by Pirsabak-2015 and the lowest in DN-84. Nonetheless, grain amylopectin showed a reduction with increasing NAR and/or split N-applications from one to two and/or three doses. Cultivars did not show any changes in the amylopectin. It is concluded that in recent climate changes where flood irrigation system is practiced, three N-splits (NAT3 or NAT4) resulted higher quality grains with140 kg N ha-1 to wheat crop


2020 ◽  
Vol 2 (1) ◽  
pp. 6-12
Author(s):  
Muhammad Faisal Ali ◽  
Sobia Rose ◽  
Sarfraz Hassan ◽  
Muhammad Ashfaq

Wheat is an incredibly political crop because of its inelastic demand in Pakistan. Wheat accounts for almost 50 percent calorie intake in the country with a relatively greater share in total calorie intake in rural areas of the country. Despite the sensitivity of this crop, it is always challenged by various factors like climate change along with other economic and political influences make it difficult to meet the nutrient requirement of the rapidly growing population. For a better-informed policy framework, it is necessary to study the previous patterns of growth of the wheat crop and its contributing factors to formulate more vigorous growth targets of the wheat crop in the future. For this purpose, we decomposed wheat growth into the area, yield and their joint effect from 1947 to 2016 both overall and decade wise to study any structural breakdown overtime. The results of the decomposition analysis reveal that the area contribution of wheat remained 35 percent while yield contribution was 61 percent. The same is the case in decade wise analysis which reveals that in future yield can be increased by adopting favourable policies to harness the yield potential of wheat in the country.  


2019 ◽  
Vol 276 ◽  
pp. 285-290 ◽  
Author(s):  
Nimesha Fernando ◽  
Singarayer K. Florentine ◽  
Mani Naiker ◽  
Joe Panozzo ◽  
Bhagirath S. Chauhan

2019 ◽  
Vol 157 ◽  
pp. 310-319 ◽  
Author(s):  
Xiangnan Li ◽  
Aneela Ulfat ◽  
Zhaoyan Lv ◽  
Liang Fang ◽  
Dong Jiang ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 316
Author(s):  
Marco Montemurro ◽  
Erica Pontonio ◽  
Rossana Coda ◽  
Carlo Giuseppe Rizzello

Due to the increasing demand for milk alternatives, related to both health and ethical needs, plant-based yogurt-like products have been widely explored in recent years. With the main goal to obtain snacks similar to the conventional yogurt in terms of textural and sensory properties and ability to host viable lactic acid bacteria for a long-time storage, several plant-derived ingredients (e.g., cereals, pseudocereals, legumes, and fruits) as well as technological solutions (e.g., enzymatic and thermal treatments) have been investigated. The central role of fermentation in yogurt-like production led to specific selections of lactic acid bacteria strains to be used as starters to guarantee optimal textural (e.g., through the synthesis of exo-polysaccharydes), nutritional (high protein digestibility and low content of anti-nutritional compounds), and functional (synthesis of bioactive compounds) features of the products. This review provides an overview of the novel insights on fermented yogurt-like products. The state-of-the-art on the use of unconventional ingredients, traditional and innovative biotechnological processes, and the effects of fermentation on the textural, nutritional, functional, and sensory features, and the shelf life are described. The supplementation of prebiotics and probiotics and the related health effects are also reviewed.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 663
Author(s):  
James Bunce

Attempts to identify crop genetic material with larger growth stimulation at projected elevated atmospheric CO2 concentrations are becoming more common. The probability of reductions in photosynthesis and yield caused by short-term variation in CO2 concentration within elevated CO2 treatments in the free-air CO2 enrichment plots raises the question of whether similar effects occur in glasshouse or indoor chamber experiments. These experiments were designed to test whether even the normal, modest, cyclic variation in CO2 concentration typical of indoor exposure systems have persistent impacts on photosynthesis and growth, and to explore mechanisms underlying the responses observed. Wheat, cotton, soybeans, and rice were grown from seed in indoor chambers at a mean CO2 concentration of 560 μmol mol−1, with “triangular” cyclic variation with standard deviations of either 4.5 or 18.0 μmol mol−1 measured with 0.1 s sampling periods with an open path analyzer. Photosynthesis, stomatal conductance, and above ground biomass at 20 to 23 days were reduced in all four species by the larger variation in CO2 concentration. Tests of rates of stomatal opening and closing with step changes in light and CO2, and tests of responses to square-wave cycling of CO2 were also conducted on individual leaves of these and three other species, using a leaf gas exchange system. Reduced stomatal conductance due to larger amplitude cycling of CO2 during growth occurred even in soybeans and rice, which had equal rates of opening and closing in response to step changes in CO2. The gas exchange results further indicated that reduced mean stomatal conductance was not the only cause of reduced photosynthesis in variable CO2 conditions.


Sign in / Sign up

Export Citation Format

Share Document