scholarly journals Is Your Moss Alive during Active Biomonitoring Study?

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2389
Author(s):  
Paweł Świsłowski ◽  
Arkadiusz Nowak ◽  
Małgorzata Rajfur

Biomonitoring was proposed to assess the condition of living organisms or entire ecosystems with the use of bioindicators—species sensitive to specific pollutants. It is important that the bioindicator species remains alive for as long as possible while retaining the ability to react to the negative effects of pollution (elimination/neutralization of hazardous contaminants). The purpose of the study was to assess the survival of Pleurozium schreberi moss during exposure (moss-bag technique) based on the measurement of the concentration of elements (Ni, Cu, Zn, Cd, and Pb), chlorophyll content, and its fluorescence. The study was carried out using a CCM-300 portable chlorophyll content meter, portable fluorometer, UV-Vis spectrophotometer, and a flame atomic absorption spectrometer. As a result of the laboratory tests, no significant differences were found in the chlorophyll content in the gametophytes of mosses tested immediately after collection from the forest, compared to those drying at room temperature in the laboratory (p = 0.175 for Student’s t-test results). Mosses exposed using the moss-bag technique of active biomonitoring were characterized by a drop in the chlorophyll content over 12 weeks (more than 50% and 60% for chlorophyll-a and chlorophyll-b, respectively). Chlorophyll content in mosses during exposure was correlated with actual photochemical efficiency (yield) of photosystem II (calculated value of Pearson’s linear correlation coefficient was 0.94—there was a significant correlation between chlorophyll a and yield p = 0.02). The highest metal increases in mosses (RAF values) were observed for zinc, lead, and copper after the second and third month of exposure. The article demonstrates that the moss exposed in an urbanized area for a period of three months maintains the properties of good bioindicator of environmental quality.

2018 ◽  
Vol 15 (4) ◽  
pp. 1161-1172 ◽  
Author(s):  
Rongliang Jia ◽  
Yun Zhao ◽  
Yanhong Gao ◽  
Rong Hui ◽  
Haotian Yang ◽  
...  

Abstract. Biocrust moss is an essential soil surface bio-cover. It can represent the latest succession stage among the diverse range of surface-dwelling cryptogams (e.g., cyanobacteria, green algae, and lichen, which are also referred to as biocrusts), and it can make a major contribution to soil stability and fertility in many arid sandy desert ecosystems. The soil surface represents a very large ecological niche that is poikilohydric in nature. Biocrust moss is therefore highly susceptible to drought and sand burial, which are two ubiquitous stressors in arid sandy deserts. However, little information is available regarding the mechanism by which biocrust moss can survive and flourish in these habitats when stressed simultaneously by the two stressors. The combined effects of drought and sand burial were evaluated in a field experiment using the predominant biocrust moss, Bryum argenteum Hedw., in the Tengger Desert, China. Drought was simulated by applying distilled water in three artificial rainfall regimes at 8-day intervals in spring and autumn: 4 and 6 mm (average rainfall, control), 2 and 3 mm (double drought), and 1 and 1.5 mm (4-fold drought), respectively. The effect of sand burial was determined by applying six treatments, i.e., sand depths of 0 (control), 0.5, 1, 2, 4, and 10 mm. The four parameters of chlorophyll a content, PSII photochemical efficiency, regeneration potential, and shoot upgrowth were evaluated in the moss. It was found that the combined effects of drought and sand burial did not exacerbate the single negative effects of the four parameters tested. Drought significantly ameliorated the negative effects of deep-sand burial on the retention of chlorophyll a content, PSII photochemical efficiency, and the regeneration potential of B. argenteum. Sand burial diminished and even reversed the negative effects of drought on the maintenance of chlorophyll a content, PSII photochemical efficiency, and regeneration potential. Although drought and sand burial imposed an additive negative effect on shoot upgrowth, which suggested a trade-off between growth ability and stress tolerance, their mutually antagonistic effect on the physiological vigor of B. argenteum provided an opportunity for the biocrust moss to overcome the two co-occurring stressors. In addition to providing a strong stress tolerance, drought and sand burial may provide an important mechanism for the biodiversity maintenance of biocrust mosses in arid sandy ecosystems.


2017 ◽  
Author(s):  
Rongliang Jia ◽  
Yun Zhao ◽  
Yanhong Gao ◽  
Rong Hui ◽  
Haotian Yang ◽  
...  

Abstract. Biocrust moss is an essential soil surface bio-cover. It represents the highest succession stage among the diverse range of surface-dwelling cryptogams (e.g., cyanobacteria, green algae, and lichen, which are also referred to as biological soil crusts) and makes a major contribution to soil stability and fertility throughout arid desert ecosystems. The soil surface represents a small ecological niche that is poikilohydric in nature. Biocrust moss is therefore highly susceptible to drought and sand burial, which are two ubiquitous stressors in arid sandy deserts. However, little information is available regarding the mechanism by which biocrust moss can survive and flourish in these habitats when stressed simultaneously by the two stressors. The combined effects of drought and sand burial were evaluated in a field experiment using the predominant biocrust moss, Bryum argenteum Hedw., in the Tengger Desert, China. Drought was simulated by applying distilled water in three artificial rainfall regimes at 8-day intervals in spring and autumn: 4 and 6 mm (average rainfall, control), 2 and 3 mm (double drought), and 1 and 1.5 mm (fourfold drought), respectively. The effect of sand burial was determined by applying six treatments, i.e., sand depths of 0 (control), 0.5, 1, 2, 4, and 10 mm. The four parameters of chlorophyll a content, PSII photochemical efficiency, regeneration potential, and shoot upgrowth were evaluated in the moss. It was found that the combined effects of drought and sand burial did not exacerbate the single negative effects of the four parameters tested. Drought significantly ameliorated the negative effects of deep sand burial on the retention of chlorophyll a content, PSII photochemical efficiency, and regeneration potential of B. argenteum. Sand burial diminished and even reversed the negative effects of drought on the maintenance of chlorophyll a content, PSII photochemical efficiency, and regeneration potential. Although drought and sand burial imposed an additive negative effect on shoot upgrowth, which suggested a trade-off between growth ability and stress tolerance, their mutually antagonistic effect on the physiological vigor of B. argenteum provided an opportunity for the biocrust moss to overcome the two co-occurring stressors. In addition to providing a strong stress tolerance, drought and sand burial may provide an important mechanism for the biodiversity maintenance of biocrust mosses in arid sandy ecosystems.


Author(s):  
Leonid E. Paramonov

A method for retrieving the absorption coefficients of Spirulina platensis pigments using absorption spectra of native cells and excluding the use of extracts is considered. Estimates of the intracellular concentration of chlorophyll a, С-phycoerythrin, С- phycocyanin and allophycocyanin in native cells are discussed.


Genetika ◽  
2014 ◽  
Vol 46 (3) ◽  
pp. 1037-1046 ◽  
Author(s):  
Muhammad Irfan ◽  
Jia-Xing Sun ◽  
Yanbin Liu ◽  
Xue Li ◽  
Shuang Yang

Chlorophyll is an important factor which also affects the yield in maize. In this study, genetic analysis of chlorophyll content was conducted by joint segregation analysis of four generations P1, P2, F1 and F2:4 from the cross Shen3336?Shen3265 using the mixed major genes and polygenes inheritance models. Genetics of chlorophyll revealed that chlorophyll ?a? was controlled by two main gene having additive-dominanceepistasis effects. The heritability of these genes were 56.3%. Chlorophyll ?b? was controlled by two pairs of codominant major gene plus additive-dominance polygene. The heritability of these major genes and polygenes were 1.12% and 93.26% respectively. Chlorophyll ?a+b? was controlled by two pairs of additive-dominance- epistatic major genes plus additive-dominance polygene having heritability of 56.2% and 5.2% respectively.


2019 ◽  
Vol 9 (2) ◽  
pp. 76
Author(s):  
Muhammad Tawary ◽  
Julius Pontoh ◽  
Lydia Momuat

Analisis Kandungan Klorofil Pada Anak Daun Tanaman Kelapa (Analysis of Chlorophyll Content in Children Leaves of Coconut Plants) Muhammad Tawary1*), Julius Pontoh1), Lydia I.Momuat1)1)Jurusan Kimia, FMIPA UNSRAT Manado*Email korespondensi: [email protected] Diterima 7 Juli 2019, diterima untuk dipublikasi 10 Agustus 2019 Abstrak Tanaman kelapa banyak dibudidayakan sebagai tanaman pertanian. Tanaman kelapa memiliki nilai ekonomi yang tinggi karena hampir semua bagian tanaman kelapa memiliki manfaat ekonomis. Penelitian bertujuan untuk  mengembangkan metode analisis klorofil pada daun dan menentukan bagian anak daun yang memiliki kandungan klorofil tertinggi. Analisis kandungan klorofil dilakukan dengan metode ektraksi pelarut yang absorbansinya dibaca pada spektrofotometer UV-Vis. Kandungan klorofil a dalam daun bervariasi pada setiap bagian anak daun tanaman kelapa. Kandungan klorofil a pada posisi tengah anak daun kelapa (763.19 µmol/m2) dan kandungan klorofil b (196.22 µmol/m2). Kandungan klorofil a dan b pada setiap bagian anak daun dan posisi kanan dan kiri anak daun memiliki nilai yang relatif sama.Kata kunci: Kelapa, klorofil a, klorofil b Abstract Many coconut plants are cultivated as agricultural crops. Coconut plants have high economic value because almost all parts of coconut plants have economic benefits. The study aims to develop a method of chlorophyll analysis on leaves and determine the part of leaflets which have the highest chlorophyll content. Analysis of chlorophyll content was carried out by a solvent extraction method in which the absorbance was read in a UV-Vis spectrophotometer. The content of chlorophyll a in leaves varies with each part of the leaves of the coconut plant. Chlorophyll a content in the middle position of coconut leaf child (763.19 µmol / m2) and chlorophyll b content (196.22 µmol / m2). The content of chlorophyll a and b in each part of the leaf child and the right and left positions of the leaves have relatively the same value.Keywords: Coconut, Chlorophyll a, Chlorophyll b


2019 ◽  
Vol 52 (1) ◽  
pp. 74-78
Author(s):  
S. Buhăianu ◽  
Doina Carmen Jităreanu

Abstract Chlorophylls from plants are photosynthetic pigments. Their quantity offers valuable informations about photosynthetic activity, growing and developing of plants. Photosynthetic pigments decrease quantitatively during senescence process or in stress conditions. The present study has been realized in laboratory conditions with material harvested from spontaneous flora. The purpose of this research was the investigation of variations of chlorophyll content from samples of biological material collected from Nepeta pannonica L. and Abies alba Mill. plants, from Câmpulung Moldovenesc and Cacica areas, Suceava county, Romania. The targeted phenophases were growth and flowering. There were realized acetonic extracts from samples for spectrophotometric determinations. Obtained data were processed to estabilish chlorophyll a and b content. There were observed that at Abies alba species, from both locations, the chlorophyll a content grew during flowering phenophase, while the chlorophyll b content had little variations. At Nepeta pannonica species, the chlorophyll a and b content decreased visibly during the flowering, due to stress. Leaves of plants from this species presented a intense green color in the growing phenophase, while during flowering phenophase they had a purple or yellow coloration. Obtained results revealed a different dynamics of chlorophyll content at studied species.


Author(s):  
Leslie Riley ◽  
Mark Dybdahl ◽  
Robert Hall

We studied positive and negative effects of snail consumers on their resource to determine if positive consumer effects may be facilitating invasion. Consumer- resource interactions often focus on losses to the resource, even though the resource might benefit if consumers recycle nutrients. The New Zealand mudsnail, Potamopyrgus antipodarum, an exotic in western U.S. rivers, attains high densities and dominates macroinvertebrate communities. In one well-studied river, it consumes the majority of primary productivity, cycles most nitrogen and can grow faster at higher densities. In field experiments, we tested the hypothesis that this invasive grazer stimulates algal growth via nitrogen excretion, which might explain its self-facilitation and invasiveness. Using in-stream cages subdivided into "with snails" and "without snails" sections, we examined the response of periphytic algae to snail grazing and excretion and snail excretion alone at various levels of snail biomass. We found that chlorophyll a and GPP (gross primary production) decreased as the biomass of snails increased in the grazed sections. Snail excretion, in the absence of grazing, increased both chlorophyll a and GPP, demonstrating a positive effect of snails on the resource, consistent with the nutrient recycling and enrichment hypothesis. We found no evidence for increased algal growth at intermediate snail densities in grazed treatments, as predicted by the Herbivore Optimization Curve hypothesis. However, the difference in chlorophyll a between "with snails" and "without snails" treatments increased as snail biomass increased. This suggests that snail compensation of the resource, through excretion, decreases at extremely high levels of grazing pressure and the net effect of snail grazing becomes negative. Together, these results suggest that invasiveness in some rivers may be fostered by this self-facilitation and recycling of essential nutrients.


Química Nova ◽  
2020 ◽  
Author(s):  
Alexandre Jesus ◽  
Ariane Zmozinskia ◽  
Diane Laroque ◽  
Márcia Silva

In this work the feasibility of sequential multi-element determination of Zn, Fe, Mg, Cu, Na, K, Cr, Al and Ca in biodiesel samples by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was investigated. Biodiesel samples obtained from different sources and different chemical processes were analysed. The samples were diluted with n-propanol and water (1.4 mol L-1 HNO3) to form a microemulsion (ME) before its introduction in the HR-CS FAAS using a flow injection mode. The sample B-01 (obtained from soybean oil) was used for optimisation of the instrumental parameters. The accuracy of the proposed method was checked by analysis of certified reference material (CRM) Conostan BDM2A (for K and Na) and BDM2B (for Ca and Mg) and by comparison with acid digestion and recovery tests (for Zn, Fe, Cu, Cr and Al). The obtained results for CRM analysis showed good agreement with certified values within 95% of confidence (Student’s t-test). Recovery tests values ranged from 87-114%. The method developed for the analysis of biodiesel samples is accurate, simple, fast, and suitable for routine application.


Author(s):  
Megha Vishwakarma ◽  
P. S. Kulhare ◽  
G. S. Tagore

Field experiments were conducted during winter season of 2018-19 and 2019-20 with three sources of nutrient  viz., inorganic, organics (FYM, VC and biofertilizers) and their integration as main treatments and five levels [S1-0 (0-0-0 kg NPK ha-1), S2-100% (120-60-40 kg NPK ha-1), S3-150% (180-90-60 kg NPK ha-1), S4-200% (240-120-80 kg NPK ha-1) and S5-Soil Test based (STV) NPK i.e. 149-176-33 kg ha-1 in split plot design with three replications. The chlorophyll content (‘a’, ‘b’ and total) in leaves and Soil Plant Analyzer Development (SPAD) value were recorded at crown root initiation (CRI), tillering, jointing and milking stage of wheat. The pooled data of findings revealed that the treatment with inorganic sources showed significant increase in the SPAD readings (9.62, 15.54, 23.77 and 29.83), chlorophyll ‘a’ (0.76, 0.83, 1.47 and 0.63 mg g-1 leaf tissue), ‘b’ (0.44, 0.78, 0.87 and 0.57 mg g-1 leaf tissue) and total (1.19, 1.64, 2.25 and 1.14 mg g-1 leaf tissue) chlorophyll content in leaves over organic source at all the growth stages. All the levels of nutrient were significantly increased the chlorophyll content and SPAD value over control at all the stages except chlorophyll ‘a’ at jointing and milking stage. However, amongst the levels 150% and 200% NPK were found significantly superior to 100% NPK for SPAD value (8.32 and 8.71 at CRI and 12.56 and 12.19 at tillering), chlorophyll ‘a’ (0.73 and 0.70 mg g-1 leaf tissue at CRI), chlorophyll ‘b’ (0.46 and 0.45 mg g-1 leaf tissue at CRI, 0.68 and 0.71 mg g-1 leaf tissue at tillering and 0.53 and 0.59 mg g-1 leaf tissue at milking), respectively. The interaction results suggested that the 200% NPK with inorganic and integrated sources significantly superior to 100% NPK for chlorophyll ‘a’ content at jointing and milking stage. The application of 150% and 200% NPK with inorganic source were found significantly higher over the same level of NPK with integrated source of nutrient for total chlorophyll content and SPAD value at all the growth stages except 150% NPK for total chlorophyll at jointing and milking stage and SPAD value at milking stage. The correlation between SPAD value and chlorophyll ’a’, ‘b’, total were found significantly and positively at all growth stages. Coefficient of determination values between SPAD and chlorophyll content showed linear relationship at all the growth stages.


Sign in / Sign up

Export Citation Format

Share Document