scholarly journals Classification of Plant Leaves Using New Compact Convolutional Neural Network Models

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Shivali Amit Wagle ◽  
R. Harikrishnan ◽  
Sawal Hamid Md Ali ◽  
Mohammad Faseehuddin

Precision crop safety relies on automated systems for detecting and classifying plants. This work proposes the detection and classification of nine species of plants of the PlantVillage dataset using the proposed developed compact convolutional neural networks and AlexNet with transfer learning. The models are trained using plant leaf data with different data augmentations. The data augmentation shows a significant improvement in classification accuracy. The proposed models are also used for the classification of 32 classes of the Flavia dataset. The proposed developed N1 model has a classification accuracy of 99.45%, N2 model has a classification accuracy of 99.65%, N3 model has a classification accuracy of 99.55%, and AlexNet has a classification accuracy of 99.73% for the PlantVillage dataset. In comparison to AlexNet, the proposed models are compact and need less training time. The proposed N1 model takes 34.58%, the proposed N2 model takes 18.25%, and the N3 model takes 20.23% less training time than AlexNet. The N1 model and N3 models are size 14.8 MB making it 92.67% compact, and the N2 model is 29.7 MB which makes it 85.29% compact as compared to AlexNet. The proposed models are giving good accuracy in classifying plant leaf, as well as diseases in tomato plant leaves.

Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 249
Author(s):  
Xin Jin ◽  
Yuanwen Zou ◽  
Zhongbing Huang

The cell cycle is an important process in cellular life. In recent years, some image processing methods have been developed to determine the cell cycle stages of individual cells. However, in most of these methods, cells have to be segmented, and their features need to be extracted. During feature extraction, some important information may be lost, resulting in lower classification accuracy. Thus, we used a deep learning method to retain all cell features. In order to solve the problems surrounding insufficient numbers of original images and the imbalanced distribution of original images, we used the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation. At the same time, a residual network (ResNet) was used for image classification. ResNet is one of the most used deep learning classification networks. The classification accuracy of cell cycle images was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of 79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to verify the effect of our model and, compared with the accuracy from previous results, our accuracy increased by 12.52%. The results showed that our new cell cycle image classification system based on WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method could potentially solve the low classification accuracy in biomedical images caused by insufficient numbers of original images and the imbalanced distribution of original images.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 45993-45999
Author(s):  
Ung Yang ◽  
Seungwon Oh ◽  
Seung Gon Wi ◽  
Bok-Rye Lee ◽  
Sang-Hyun Lee ◽  
...  

2020 ◽  
Vol 9 (4) ◽  
pp. 1-17
Author(s):  
Mridu Sahu ◽  
Tushar Jani ◽  
Maski Saijahnavi ◽  
Amrit Kumar ◽  
Upendra Chaurasiya ◽  
...  

Rust detection is necessary for proper working and maintenance of machines for security purposes. Images are one of the suggested platforms for rust detection in which rust can be detected even though the human can't reach to the area. However, there are a lack of online databases available that can provide a sizable dataset to identify the most suitable model that can be used further. This paper provides a data augmentation technique by using Perlin noise, and further, the generated images are tested on standard features (i.e., statistical values, entropy, along with SIFT and SURF methods). The two most generalized classifiers, naïve Bayes and support vector machine, are identified and tested to obtain the performance of classification of rusty and non-rusty images. The support vector machine provides better classification accuracy, which also suggests that that the combined features of statistics, SIFT, and SURF are able to differentiate the images. Hence, it can be further used to detect the rust in different parts of machines.


Palaios ◽  
2020 ◽  
Vol 35 (9) ◽  
pp. 391-402 ◽  
Author(s):  
RAFAEL PIRES DE LIMA ◽  
KATIE F. WELCH ◽  
JAMES E. BARRICK ◽  
KURT J. MARFURT ◽  
ROGER BURKHALTER ◽  
...  

ABSTRACT Accurate taxonomic classification of microfossils in thin-sections is an important biostratigraphic procedure. As paleontological expertise is typically restricted to specific taxonomic groups and experts are not present in all institutions, geoscience researchers often suffer from lack of quick access to critical taxonomic knowledge for biostratigraphic analyses. Moreover, diminishing emphasis on education and training in systematics poses a major challenge for the future of biostratigraphy, and on associated endeavors reliant on systematics. Here we present a machine learning approach to classify and organize fusulinids—microscopic index fossils for the late Paleozoic. The technique we employ has the potential to use such important taxonomic knowledge in models that can be applied to recognize and categorize fossil specimens. Our results demonstrate that, given adequate images and training, convolutional neural network models can correctly identify fusulinids with high levels of accuracy. Continued efforts in digitization of biological and paleontological collections at numerous museums and adoption of machine learning by paleontologists can enable the development of highly accurate and easy-to-use classification tools and, thus, facilitate biostratigraphic analyses by non-experts as well as allow for cross-validation of disparate collections around the world. Automation of classification work would also enable expert paleontologists and others to focus efforts on exploration of more complex interpretations and concepts.


Author(s):  
Juntao Li ◽  
Lisong Qiu ◽  
Bo Tang ◽  
Dongmin Chen ◽  
Dongyan Zhao ◽  
...  

Recent successes of open-domain dialogue generation mainly rely on the advances of deep neural networks. The effectiveness of deep neural network models depends on the amount of training data. As it is laboursome and expensive to acquire a huge amount of data in most scenarios, how to effectively utilize existing data is the crux of this issue. In this paper, we use data augmentation techniques to improve the performance of neural dialogue models on the condition of insufficient data. Specifically, we propose a novel generative model to augment existing data, where the conditional variational autoencoder (CVAE) is employed as the generator to output more training data with diversified expressions. To improve the correlation of each augmented training pair, we design a discriminator with adversarial training to supervise the augmentation process. Moreover, we thoroughly investigate various data augmentation schemes for neural dialogue system with generative models, both GAN and CVAE. Experimental results on two open corpora, Weibo and Twitter, demonstrate the superiority of our proposed data augmentation model.


2019 ◽  
Vol 14 (2) ◽  
pp. 158-164 ◽  
Author(s):  
G. Emayavaramban ◽  
A. Amudha ◽  
T. Rajendran ◽  
M. Sivaramkumar ◽  
K. Balachandar ◽  
...  

Background: Identifying user suitability plays a vital role in various modalities like neuromuscular system research, rehabilitation engineering and movement biomechanics. This paper analysis the user suitability based on neural networks (NN), subjects, age groups and gender for surface electromyogram (sEMG) pattern recognition system to control the myoelectric hand. Six parametric feature extraction algorithms are used to extract the features from sEMG signals such as AR (Autoregressive) Burg, AR Yule Walker, AR Covariance, AR Modified Covariance, Levinson Durbin Recursion and Linear Prediction Coefficient. The sEMG signals are modeled using Cascade Forward Back propagation Neural Network (CFBNN) and Pattern Recognition Neural Network. Methods: sEMG signals generated from forearm muscles of the participants are collected through an sEMG acquisition system. Based on the sEMG signals, the type of movement attempted by the user is identified in the sEMG recognition module using signal processing, feature extraction and machine learning techniques. The information about the identified movement is passed to microcontroller wherein a control is developed to command the prosthetic hand to emulate the identified movement. Results: From the six feature extraction algorithms and two neural network models used in the study, the maximum classification accuracy of 95.13% was obtained using AR Burg with Pattern Recognition Neural Network. This justifies that the Pattern Recognition Neural Network is best suited for this study as the neural network model is specially designed for pattern matching problem. Moreover, it has simple architecture and low computational complexity. AR Burg is found to be the best feature extraction technique in this study due to its high resolution for short data records and its ability to always produce a stable model. In all the neural network models, the maximum classification accuracy is obtained for subject 10 as a result of his better muscle fitness and his maximum involvement in training sessions. Subjects in the age group of 26-30 years are best suited for the study due to their better muscle contractions. Better muscle fatigue resistance has contributed for better performance of female subjects as compared to male subjects. From the single trial analysis, it can be observed that the hand close movement has achieved best recognition rate for all neural network models. Conclusion: In this paper a study was conducted to identify user suitability for designing hand prosthesis. Data were collected from ten subjects for twelve tasks related to finger movements. The suitability of the user was identified using two neural networks with six parametric features. From the result, it was concluded thatfit women doing regular physical exercises aged between 26-30 years are best suitable for developing HMI for designing a prosthetic hand. Pattern Recognition Neural Network with AR Burg extraction features using extension movements will be a better way to design the HMI. However, Signal acquisition based on wireless method is worth considering for the future.


2020 ◽  
Vol 43 (12) ◽  
Author(s):  
Sriram K. Vidyarthi ◽  
Samrendra K. Singh ◽  
Rakhee Tiwari ◽  
Hong‐Wei Xiao ◽  
Rewa Rai

2020 ◽  
Vol 36 (12) ◽  
pp. 3693-3702 ◽  
Author(s):  
Dandan Zheng ◽  
Guansong Pang ◽  
Bo Liu ◽  
Lihong Chen ◽  
Jian Yang

Abstract Motivation Identification of virulence factors (VFs) is critical to the elucidation of bacterial pathogenesis and prevention of related infectious diseases. Current computational methods for VF prediction focus on binary classification or involve only several class(es) of VFs with sufficient samples. However, thousands of VF classes are present in real-world scenarios, and many of them only have a very limited number of samples available. Results We first construct a large VF dataset, covering 3446 VF classes with 160 495 sequences, and then propose deep convolutional neural network models for VF classification. We show that (i) for common VF classes with sufficient samples, our models can achieve state-of-the-art performance with an overall accuracy of 0.9831 and an F1-score of 0.9803; (ii) for uncommon VF classes with limited samples, our models can learn transferable features from auxiliary data and achieve good performance with accuracy ranging from 0.9277 to 0.9512 and F1-score ranging from 0.9168 to 0.9446 when combined with different predefined features, outperforming traditional classifiers by 1–13% in accuracy and by 1–16% in F1-score. Availability and implementation All of our datasets are made publicly available at http://www.mgc.ac.cn/VFNet/, and the source code of our models is publicly available at https://github.com/zhengdd0422/VFNet. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document