scholarly journals The Xylanase Inhibitor TAXI-I Increases Plant Resistance to Botrytis cinerea by Inhibiting the BcXyn11a Xylanase Necrotizing Activity

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 601
Author(s):  
Silvio Tundo ◽  
Maria Chiara Paccanaro ◽  
Ibrahim Elmaghraby ◽  
Ilaria Moscetti ◽  
Renato D’Ovidio ◽  
...  

During host plant infection, pathogens produce a wide array of cell wall degrading enzymes (CWDEs) to break the plant cell wall. Among CWDEs, xylanases are key enzymes in the degradation of xylan, the main component of hemicellulose. Targeted deletion experiments support the direct involvement of the xylanase BcXyn11a in the pathogenesis of Botrytis cinerea. Since the Triticum aestivum xylanase inhibitor-I (TAXI-I) has been shown to inhibit BcXyn11a, we verified if TAXI-I could be exploited to counteract B. cinerea infections. With this aim, we first produced Nicotiana tabacum plants transiently expressing TAXI-I, observing increased resistance to B. cinerea. Subsequently, we transformed Arabidopsis thaliana to express TAXI-I constitutively, and we obtained three transgenic lines exhibiting a variable amount of TAXI-I. The line with the higher level of TAXI-I showed increased resistance to B. cinerea and the absence of necrotic lesions when infiltrated with BcXyn11a. Finally, in a droplet application experiment on wild-type Arabidopsis leaves, TAXI-I prevented the necrotizing activity of BcXyn11a. These results would confirm that the contribution of BcXyn11a to virulence is due to its necrotizing rather than enzymatic activity. In conclusion, our experiments highlight the ability of the TAXI-I xylanase inhibitor to counteract B. cinerea infection presumably by preventing the necrotizing activity of BcXyn11a.

2016 ◽  
Vol 29 (8) ◽  
pp. 629-639 ◽  
Author(s):  
Silvio Tundo ◽  
Raviraj Kalunke ◽  
Michela Janni ◽  
Chiara Volpi ◽  
Vincenzo Lionetti ◽  
...  

Plant protein inhibitors counteract the activity of cell wall–degrading enzymes (CWDEs) secreted by pathogens to breach the plant cell-wall barrier. Transgenic plants expressing a single protein inhibitor restrict pathogen infections. However, since pathogens secrete a number of CWDEs at the onset of infection, we combined more inhibitors in a single wheat genotype to reinforce further the cell-wall barrier. We combined polygalacturonase (PG) inhibiting protein (PGIP) and pectin methyl esterase inhibitor (PMEI), both controlling the activity of PG, one of the first CWDEs secreted during infection. We also pyramided PGIP and TAXI-III, a xylanase inhibitor that controls the activity of xylanases, key factors for the degradation of xylan, a main component of cereal cell wall. We demonstrated that the pyramiding of PGIP and PMEI did not contribute to any further improvement of disease resistance. However, the presence of both pectinase inhibitors ensured a broader spectrum of disease resistance. Conversely, the PGIP and TAXI-III combination contributed to further improvement of Fusarium head blight (FHB) resistance, probably because these inhibitors target the activity of different types of CWDEs, i.e., PGs and xylanases. Worth mentioning, the reduction of FHB symptoms is accompanied by a reduction of deoxynivalenol accumulation with a foreseen great benefit to human and animal health.


2017 ◽  
Vol 30 (11) ◽  
pp. 886-895 ◽  
Author(s):  
Maria Chiara Paccanaro ◽  
Luca Sella ◽  
Carla Castiglioni ◽  
Francesca Giacomello ◽  
Ana Lilia Martínez-Rocha ◽  
...  

Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.


2005 ◽  
Vol 18 (12) ◽  
pp. 1296-1305 ◽  
Author(s):  
Huanli Liu ◽  
Shuping Zhang ◽  
Mark A. Schell ◽  
Timothy P. Denny

Ralstonia solanacearum, like many phytopathogenic bacteria, makes multiple extracellular plant cell-wall-degrading enzymes (CWDE), some of which contribute to its ability to cause wilt disease. CWDE and many other proteins are secreted to the milieu via the highly conserved type II protein secretion system (T2SS). R. solanacearum with a defective T2SS is weakly virulent, but it is not known whether this is due to absence of all the CWDE or the loss of other secreted proteins that contribute to disease. These alternatives were investigated by creating mutants of wild-type strain GMI1000 lacking either the T2SS or up to six CWDE and comparing them for virulence on tomato plants. To create unmarked deletions, genomic regions flanking the target gene were polymerase chain reaction (PCR)-amplified, were fused using splice overlap extension PCR, were cloned into a suicide plasmid harboring the sacB counter-selectable marker, and then, were site-specifically introduced into the genome. Various combinations of five deletions (δpehA, δpehB, δpehC, δpme, and δegl) and one inactivated allele (cbhA::aphA-3) resulted in 15 mutants missing one to six CWDE. In soil-drench inoculation assays, virulence of mutants lacking only pectic enzymes (PehA, PehB, PehC, and Pme) was not statistically different from GMI1000, but all the mutants lacking one or both cellulolytic enzymes (Egl or CbhA) wilted plants significantly more slowly than did the wild type. The GMI-6 mutant that lacks all six CWDE was more virulent than the mutant lacking only its two cellulolytic enzymes, and both were significantly more virulent than the T2SS mutant (GMI-D). Very similar results were observed in wounded-petiole inoculation assays, so GMI-6 and GMI-D appear to be less capable of colonizing tomato tissues after invasion. Because the T2SS mutant was much less virulent than the sixfold CWDE mutant, we conclude that other secreted proteins contribute substantially to the ability of R. solanacearum GMI1000 to systemically colonize tomato plants.


2006 ◽  
Vol 19 (10) ◽  
pp. 1072-1081 ◽  
Author(s):  
Tim Beliën ◽  
Steven Van Campenhout ◽  
Johan Robben ◽  
Guido Volckaert

Endo-β-1,4-xylanases (EC 3.2.1.8) are key enzymes in the degradation of xylan, the predominant hemicellulose in the cell walls of plants and the second most abundant polysaccharide on earth. A number of endoxylanases are produced by microbial phytopathogens responsible for severe crop losses. These enzymes are considered to play an important role in phytopathogenesis, as they provide essential means to the attacking organism to break through the plant cell wall. Plants have evolved numerous defense mechanisms to protect themselves against invading pathogens, amongst which are proteinaceous inhibitors of cell wall-degrading enzymes. These defense mechanisms are triggered when a pathogen-derived elicitor is recognized by the plant. In this review, the diverse aspects of endoxylanases in promoting virulence and in eliciting plant defense systems are highlighted. Furthermore, the role of the relatively recently discovered cereal endoxylanase inhibitor families TAXI (Triticum aestivum xylanase inhibitor) and XIP (xylanase inhibitor protein) in plant defense is discussed.


2010 ◽  
Vol 150 ◽  
pp. 513-514
Author(s):  
A.M. Polizeli ◽  
M.A. Moraes ◽  
J.A. Jorge ◽  
H.F. Terenzi ◽  
M.L.T.M. Polizeli

2014 ◽  
Vol 27 (8) ◽  
pp. 781-792 ◽  
Author(s):  
Majse Nafisi ◽  
Maria Stranne ◽  
Lisha Zhang ◽  
Jan A. L. van Kan ◽  
Yumiko Sakuragi

The plant cell wall is one of the first physical interfaces encountered by plant pathogens and consists of polysaccharides, of which arabinan is an important constituent. During infection, the necrotrophic plant pathogen Botrytis cinerea secretes a cocktail of plant cell-wall-degrading enzymes, including endo-arabinanase activity, which carries out the breakdown of arabinan. The roles of arabinan and endo-arabinanases during microbial infection were thus far elusive. In this study, the gene Bcara1 encoding for a novel α-1,5-L-endo-arabinanase was identified and the heterologously expressed BcAra1 protein was shown to hydrolyze linear arabinan with high efficiency whereas little or no activity was observed against the other oligo- and polysaccharides tested. The Bcara1 knockout mutants displayed reduced arabinanase activity in vitro and severe retardation in secondary lesion formation during infection of Arabidopsis leaves. These results indicate that BcAra1 is a novel endo-arabinanase and plays an important role during the infection of Arabidopsis. Interestingly, the level of Bcara1 transcript was considerably lower during the infection of Nicotiana benthamiana compared with Arabidopsis and, consequently, the ΔBcara1 mutants showed the wild-type level of virulence on N. benthamiana leaves. These results support the conclusion that the expression of Bcara1 is host dependent and is a key determinant of the disease outcome.


1998 ◽  
Vol 64 (12) ◽  
pp. 4918-4923 ◽  
Author(s):  
Julie Tans-Kersten ◽  
Yanfen Guan ◽  
Caitilyn Allen

ABSTRACT Ralstonia (Pseudomonas)solanacearum causes bacterial wilt, a serious disease of many crop plants. The pathogen produces several extracellular plant cell wall-degrading enzymes, including polygalacturonases (PGs) and pectin methylesterase (Pme). Pme removes methyl groups from pectin, thereby facilitating subsequent breakdown of this cell wall component by PGs, which are known bacterial wilt virulence factors. R. solanacearum PGs could not degrade 93% methylated pectin unless the substrate was first demethylated by Pme, but as the degree of methylation of the pectin substrate decreased, PG activity increased. Primers derived from a published pme sequence generated an 800-bp DNA probe fragment, which identified Pme-encoding plasmids from a R. solanacearum genomic library. A pmechromosomal mutant had no detectable Pme activity in vitro and no longer grew on 93% methylated pectin as a carbon source. Curiously, the pme mutant, which had no detectable PG activity on highly methylated pectin, was just as virulent as the wild-type strain on tomato, eggplant (aubergine), and tobacco. Since PG activity is required for full virulence, this result suggests that the pectin in these particular hosts may not be highly methylated, or that the breakdown of highly methylated pectin is not a significant factor in the disease process in general. A positive response regulator of PG production called PehR was not required for wild-type Pme production. However, a mutant strain lacking PhcA, which is a global regulator of several virulence genes, produced no detectable Pme activity. Thus,pme expression is directly or indirectly regulated by PhcA but not by PehR.


2015 ◽  
Vol 28 (10) ◽  
pp. 1091-1101 ◽  
Author(s):  
Chenghua Zhang ◽  
Yifan He ◽  
Pinkuan Zhu ◽  
Lu Chen ◽  
Yiwen Wang ◽  
...  

Botrytis cinerea is a necrotrophic pathogen that causes gray mold disease in a broad range of plants. Dihydroxynaphthalene (DHN) melanin is a major component of the extracellular matrix of B. cinerea, but knowledge of the exact role of melanin biosynthesis in this pathogen is unclear. In this study, we characterize two genes in B. cinerea, bcpks13 and bcbrn1, encoding polyketide synthase and tetrahydroxynaphthalene (THN) reductases, respectively, and both have predicted roles in DHN melanin biosynthesis. The ∆bcpks13 and ∆bcbrn1 mutants show white and orange pigmentation, respectively, and the mutants are also deficient in conidiation in vitro but show enhanced growth rates and virulence on hosts. Moreover, the mutants display elevated acidification of the complete medium (CM), probably due to oxalic acid secretion and secretion of cell wall–degrading enzymes, and preferably utilize plant cell-wall components as carbon sources for mycelium growth in vitro. In contrast, overexpression of bcbrn1 (OE::bcbrn1 strain) results in attenuated hydrolytic enzyme secretion, acidification ability, and virulence. Taken together, these results indicate that bcpks13 and bcbrn1 participate in diverse cellular and developmental processes, such as melanization and conidiation in B. cinerea in vitro, but they negatively regulate the virulence of this pathogen.


2000 ◽  
Vol 182 (5) ◽  
pp. 1304-1312 ◽  
Author(s):  
Angeles Zorreguieta ◽  
Christine Finnie ◽  
J. Allan Downie

ABSTRACT Rhizobium leguminosarum secretes two extracellular glycanases, PlyA and PlyB, that can degrade exopolysaccharide (EPS) and carboxymethyl cellulose (CMC), which is used as a model substrate of plant cell wall cellulose polymers. When grown on agar medium, CMC degradation occurred only directly below colonies of R. leguminosarum, suggesting that the enzymes remain attached to the bacteria. Unexpectedly, when a PlyA-PlyB-secreting colony was grown in close proximity to mutants unable to produce or secrete PlyA and PlyB, CMC degradation occurred below that part of the mutant colonies closest to the wild type. There was no CMC degradation in the region between the colonies. By growing PlyB-secreting colonies on a lawn of CMC-nondegrading mutants, we could observe a halo of CMC degradation around the colony. Using various mutant strains, we demonstrate that PlyB diffuses beyond the edge of the colony but does not degrade CMC unless it is in contact with the appropriate colony surface. PlyA appears to remain attached to the cells since no such diffusion of PlyA activity was observed. EPS defective mutants could secrete both PlyA and PlyB, but these enzymes were inactive unless they came into contact with an EPS+ strain, indicating that EPS is required for activation of PlyA and PlyB. However, we were unable to activate CMC degradation with a crude EPS fraction, indicating that activation of CMC degradation may require an intermediate in EPS biosynthesis. Transfer of PlyB to Agrobacterium tumefaciens enabled it to degrade CMC, but this was only observed if it was grown on a lawn ofR. leguminosarum. This indicates that the surface ofA. tumefaciens is inappropriate to activate CMC degradation by PlyB. Analysis of CMC degradation by other rhizobia suggests that activation of secreted glycanases by surface components may occur in other species.


Sign in / Sign up

Export Citation Format

Share Document