scholarly journals Germination Data Analysis by Time-to-Event Approaches

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 617
Author(s):  
Alessandro Romano ◽  
Piergiorgio Stevanato

Germination data are analyzed by several methods, which can be mainly classified as germination indexes and traditional regression techniques to fit non-linear parametric functions to the temporal sequence of cumulative germination. However, due to the nature of germination data, often different from other biological data, the abovementioned methods may present some limits, especially when ungerminated seeds are present at the end of an experiment. A class of methods that could allow addressing these issues is represented by the so-called “time-to-event analysis”, better known in other scientific fields as “survival analysis” or “reliability analysis”. There is relatively little literature about the application of these methods to germination data, and some reviews dealt only with parts of the possible approaches such as either non-parametric and semi-parametric or parametric ones. The present study aims to give a contribution to the knowledge about the reliability of these methods by assessing all the main approaches to the same germination data provided by sugar beet (Beta vulgaris L.) seeds cohorts. The results obtained confirmed that although the different approaches present advantages and disadvantages, they could generally represent a valuable tool to analyze germination data providing parameters whose usefulness depends on the purpose of the research.

2011 ◽  
Vol 38 (5) ◽  
pp. 431 ◽  
Author(s):  
A. M. Wubs ◽  
E. Heuvelink ◽  
L. F. M. Marcelis ◽  
L. Hemerik

Time-to-event analysis, or survival analysis, is a method to analyse the timing of events and to quantify the effects of contributing factors. We apply this method to data on the timing of abortion of reproductive organs. This abortion often depends on source and sink strength. We hypothesise that the effect of source and sink strength on abortion rate can be quantified with a statistical model, obtained via survival analysis. Flower and fruit abortion in Capsicum annuum L., observed in temperature and planting density experiments, were analysed. Increasing the source strength as well as decreasing the sink strength decreased the abortion rate. The effect was non-linear, e.g. source strengths above 6 g CH2O per plant per d did not decrease abortion rates further. The maximum abortion rate occurred around 100 degree-days after anthesis. Analyses in which sink strength was replaced with the number of fruits in a specified age category had an equal or better fit to the data. We discuss the advantages and disadvantages of using survival analyses for this kind of data. The technique can also be used for other crops showing reproductive organ abortion (e.g. soybean (Glycine max L.), cucumber (Cucumis sativus L.)), but also on other event types like bud break or germination.


2020 ◽  
pp. 181-218
Author(s):  
Bendix Carstensen

This chapter describes survival analysis. Survival analysis concerns data where the outcome is a length of time, namely the time from inclusion in the study (such as diagnosis of some disease) till death or some other event — hence the term 'time to event analysis', which is also used. There are two primary targets normally addressed in survival analysis: survival probabilities and event rates. The chapter then looks at the life table estimator of survival function and the Kaplan–Meier estimator of survival. It also considers the Cox model and its relationship with Poisson models, as well as the Fine–Gray approach to competing risks.


Cephalalgia ◽  
1999 ◽  
Vol 19 (6) ◽  
pp. 552-556 ◽  
Author(s):  
C Allen ◽  
K Jiang ◽  
W Malbecq ◽  
PJ Goadsby

Survival analysis, or, more generally, time-to-event analysis, is of interest when the data represent the time to a defined event. While well established in oncology, it has not been widely applied to migraine research, possibly because the data are usually collected intermittently, rather than continuously, and because of the awkwardness of interpreting treatment effect in survival terms. However, it represents an interesting approach for the analysis of time-to-headache relief, which addresses the clinically relevant question of who gets better sooner. The analysis uses data from all time-points to define the likelihood of headache relief following treatment throughout the entire assessment period. These data can then be used to quantify and test the difference between two therapies.


This chapter introduces the use of basic time-to-event analysis (a variation of “survival analysis”) to identify time-series patterns from learning management system (LMS) data portal datasets to enable empirical-based theorizing and interpretation. This approach addresses questions such as How long does it usually take before a particular event occurs? What time patterns may be seen in empirical data? What sorts of analysis and decision making can be understood from the time patterns? This chapter uses multiple datasets—related to assignment submittals and their time to grading, learner enrollments and the updates to those enrollments, and group membership and how long groups last, and other data—to demonstrate this process.


2012 ◽  
Vol 22 (2) ◽  
pp. 77-95 ◽  
Author(s):  
James N. McNair ◽  
Anusha Sunkara ◽  
Daniel Frobish

AbstractSeed germination experiments are conducted in a wide variety of biological disciplines. Numerous methods of analysing the resulting data have been proposed, most of which fall into three classes: intuition-based germination indexes, classical non-linear regression analysis and time-to-event analysis (also known as survival analysis, failure-time analysis and reliability analysis). This paper briefly reviews all three of these classes, and argues that time-to-event analysis has important advantages over the other methods but has been underutilized to date. It also reviews in detail the types of time-to-event analysis that are most useful in analysing seed germination data with standard statistical software. These include non-parametric methods (life-table and Kaplan–Meier estimators, and various methods for comparing two or more groups of seeds) and semi-parametric methods (Cox proportional hazards model, which permits inclusion of categorical and quantitative covariates, and fixed and random effects). Each method is illustrated by applying it to a set of real germination data. Sample code for conducting these analyses with two standard statistical programs is also provided in the supplementary material available online (athttp://journals.cambridge.org/). The methods of time-to-event analysis reviewed here can be applied to many other types of biological data, such as seedling emergence times, flowering times, development times for eggs or embryos, and organism lifetimes.


2020 ◽  
Vol 27 (38) ◽  
pp. 6523-6535 ◽  
Author(s):  
Antreas Afantitis ◽  
Andreas Tsoumanis ◽  
Georgia Melagraki

Drug discovery as well as (nano)material design projects demand the in silico analysis of large datasets of compounds with their corresponding properties/activities, as well as the retrieval and virtual screening of more structures in an effort to identify new potent hits. This is a demanding procedure for which various tools must be combined with different input and output formats. To automate the data analysis required we have developed the necessary tools to facilitate a variety of important tasks to construct workflows that will simplify the handling, processing and modeling of cheminformatics data and will provide time and cost efficient solutions, reproducible and easier to maintain. We therefore develop and present a toolbox of >25 processing modules, Enalos+ nodes, that provide very useful operations within KNIME platform for users interested in the nanoinformatics and cheminformatics analysis of chemical and biological data. With a user-friendly interface, Enalos+ Nodes provide a broad range of important functionalities including data mining and retrieval from large available databases and tools for robust and predictive model development and validation. Enalos+ Nodes are available through KNIME as add-ins and offer valuable tools for extracting useful information and analyzing experimental and virtual screening results in a chem- or nano- informatics framework. On top of that, in an effort to: (i) allow big data analysis through Enalos+ KNIME nodes, (ii) accelerate time demanding computations performed within Enalos+ KNIME nodes and (iii) propose new time and cost efficient nodes integrated within Enalos+ toolbox we have investigated and verified the advantage of GPU calculations within the Enalos+ nodes. Demonstration data sets, tutorial and educational videos allow the user to easily apprehend the functions of the nodes that can be applied for in silico analysis of data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bethany E. Higgins ◽  
Giovanni Montesano ◽  
Alison M. Binns ◽  
David P. Crabb

AbstractIn age-related macular degeneration (AMD) research, dark adaptation has been found to be a promising functional measurement. In more severe cases of AMD, dark adaptation cannot always be recorded within a maximum allowed time for the test (~ 20–30 min). These data are recorded either as censored data-points (data capped at the maximum test time) or as an estimated recovery time based on the trend observed from the data recorded within the maximum recording time. Therefore, dark adaptation data can have unusual attributes that may not be handled by standard statistical techniques. Here we show time-to-event analysis is a more powerful method for analysis of rod-intercept time data in measuring dark adaptation. For example, at 80% power (at α = 0.05) sample sizes were estimated to be 20 and 61 with uncapped (uncensored) and capped (censored) data using a standard t-test; these values improved to 12 and 38 when using the proposed time-to-event analysis. Our method can accommodate both skewed data and censored data points and offers the advantage of significantly reducing sample sizes when planning studies where this functional test is an outcome measure. The latter is important because designing trials and studies more efficiently equates to newer treatments likely being examined more efficiently.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sameera Senanayake ◽  
Nicholas Graves ◽  
Helen Healy ◽  
Keshwar Baboolal ◽  
Adrian Barnett ◽  
...  

Abstract Background Economic-evaluations using decision analytic models such as Markov-models (MM), and discrete-event-simulations (DES) are high value adds in allocating resources. The choice of modelling method is critical because an inappropriate model yields results that could lead to flawed decision making. The aim of this study was to compare cost-effectiveness when MM and DES were used to model results of transplanting a lower-quality kidney versus remaining waitlisted for a kidney. Methods Cost-effectiveness was assessed using MM and DES. We used parametric survival models to estimate the time-dependent transition probabilities of MM and distribution of time-to-event in DES. MMs were simulated in 12 and 6 monthly cycles, out to five and 20-year time horizon. Results DES model output had a close fit to the actual data. Irrespective of the modelling method, the cycle length of MM or the time horizon, transplanting a low-quality kidney as compared to remaining waitlisted was the dominant strategy. However, there were discrepancies in costs, effectiveness and net monetary benefit (NMB) among different modelling methods. The incremental NMB of the MM in the 6-months cycle lengths was a closer fit to the incremental NMB of the DES. The gap in the fit of the two cycle lengths to DES output reduced as the time horizon increased. Conclusion Different modelling methods were unlikely to influence the decision to accept a lower quality kidney transplant or remain waitlisted on dialysis. Both models produced similar results when time-dependant transition probabilities are used, most notable with shorter cycle lengths and longer time-horizons.


Sign in / Sign up

Export Citation Format

Share Document