scholarly journals Genomic Characterization and Expression Analysis of Basic Helix-Loop-Helix (bHLH) Family Genes in Traditional Chinese Herb Dendrobium officinale

Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1044 ◽  
Author(s):  
Yue Wang ◽  
Aizhong Liu

Dendrobium officinale Kimura et Migo is of great importance as a traditional Chinese herb due to its abundant metabolites. The family of basic helix-loop-helix (bHLH) transcription factors widely exists in plants and plays an essential role in plant growth and development, secondary metabolism as well as responses to environmental changes. However, there is limited information on bHLH genes in D. officinale. In the present study, a total of 98 putative DobHLH genes were identified at the genomic level, which could be classified into 18 clades. Gene structures and conserved motifs in DobHLH genes showed high conservation during their evolution. The conserved amino acids and DNA bindings of DobHLH proteins were predicted, both of which are pivotal for their function. Furthermore, gene expression from eight tissues showed that some DobHLH genes were ubiquitously expressed while other DobHLH genes were expressed in the specific tissues. Expressional changes of DobHLH genes under MeJA and ABA treatments were detected by qRT-PCR. The protein–protein interactions between DobHLHs were predicted and several interactions were confirmed by yeast two hybrid. Therefore, our results here contribute to the understanding of bHLH genes in D. officinale and lay a foundation for the further functional study of its biological processes.

2019 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins participate in regulating of a series of biological and developmental processes in plants. Although several bHLH genes of citrus have been identified and previously characterized, a large number of bHLH members are still unknown.Results In this study, we genome-widely identified a total of 128 CgbHLHs from pummelo (Citrus grandis) that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 37 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, 22 of CgbHLHs were identified as the key candidates that respond to iron deficiency.Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Karen A. Hudson ◽  
Matthew E. Hudson

The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH) family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281) of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop.


1994 ◽  
Vol 14 (6) ◽  
pp. 4145-4154
Author(s):  
P Armand ◽  
A C Knapp ◽  
A J Hirsch ◽  
E F Wieschaus ◽  
M D Cole

We have found that a novel basic helix-loop-helix (bHLH) protein is expressed almost exclusively in the epidermal attachments sites for the somatic muscles of Drosophila melanogaster. A Drosophila cDNA library was screened with radioactively labeled E12 protein, which can dimerize with many HLH proteins. One clone that emerged from this screen encoded a previously unknown protein of 360 amino acids, named delilah, that contains both basic and HLH domains, similar to a group of cellular transcription factors implicated in cell type determination. Delilah protein formed heterodimers with E12 that bind to the muscle creatine kinase promoter. In situ hybridization with the delilah cDNA localized the expression of the gene to a subset of cells in the epidermis which form a distinct pattern involving both the segmental boundaries and intrasegmental clusters. This pattern was coincident with the known sites of attachment of the somatic muscles to tendon cells in the epidermis. delilah expression persists in snail mutant embryos which lack mesoderm, indicating that expression of the gene was not induced by attachment of the underlying muscles. The similarity of this gene to other bHLH genes suggests that it plays an important role in the differentiation of epidermal cells into muscle attachment sites.


Author(s):  
Jingjing Geng ◽  
Tonglu Wei ◽  
Yue Wang ◽  
Xiaosan Huang ◽  
Ji-Hong Liu

Abstract The basic helix-loop-helix (bHLH) family of transcription factors (TFs) plays a crucial role in regulating plant response to abiotic stress by targeting a large spectrum of stress-responsive genes. However, the physiological mechanisms underlying the TF-mediated stress response are still poorly understood for most of the bHLH genes. In this study, transgenic pummelo (Citrus grandis) plants overexpressing PtrbHLH, a TF previously identified from Poncirus trifoliata, were generated via Agrobacterium-mediated transformation. In comparison with the wild-type plants, the transgenic lines exhibited significantly lower electrolyte leakage and malondialdehyde content after cold treatment, thereby resulting in a more tolerant phenotype. Meanwhile, the transgenic lines accumulated dramatically lower reactive oxygen species (ROS) levels, consistent with elevated activity and expression levels of antioxidant enzymes (genes), including catalase (CAT), peroxidase and superoxide dismutase. In addition, PtrbHLH was shown to specifically bind to and activate the promoter of PtrCAT gene. Taken together, these results demonstrated that overexpression of PtrbHLH leads to enhanced cold tolerance in transgenic pummelo, which may be due, at least partly, to modulation of ROS levels by regulating the CAT gene.


Genome ◽  
2014 ◽  
Vol 57 (10) ◽  
pp. 525-536 ◽  
Author(s):  
Xiao-Ting Liu ◽  
Yong Wang ◽  
Xu-Hua Wang ◽  
Xia-Fang Tao ◽  
Qin Yao ◽  
...  

Basic helix-loop-helix (bHLH) proteins are highly conserved DNA-binding transcription factors of a large superfamily. Animal bHLH proteins play important regulatory roles in various developmental processes such as neurogenesis, myogenesis, heart development, and hematopoiesis. The jewel wasp (Nasonia vitripennis) is a good model organism of hymenoptera insects for studies of developmental and evolutionary genetics. In this study, we identified 48 bHLH genes in the genome of N. vitripennis. According to phylogenetic analysis, based on N. vitripennis bHLH (NvbHLH) motif sequences and structural domain distribution in their full-length protein sequences, the identified NvbHLH genes were classified into 36 bHLH families with 19, 12, 9, 1, 6, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Our classification to the identified NvbHLH family members confirms GenBank annotations for 21 of the 48 NvbHLH proteins and provides useful information for further characterization and annotation of the remaining 27 NvbHLH proteins. Compared to other insect species, N. vitripennis has the lowest number of bHLH family members. No NvbHLH members have been found in the families Net, MyoRa, and PTFa, while all other insect species have at least one member in each of the families. These data constitute a solid basis for further investigations into the functions of bHLH proteins in developmental regulation of N. vitripennis.


Development ◽  
1998 ◽  
Vol 125 (23) ◽  
pp. 4821-4833 ◽  
Author(s):  
N.L. Brown ◽  
S. Kanekar ◽  
M.L. Vetter ◽  
P.K. Tucker ◽  
D.L. Gemza ◽  
...  

We have identified Math5, a mouse basic helix-loop-helix (bHLH) gene that is closely related to Drosophila atonal and Xenopus Xath5 and is largely restricted to the developing eye. Math5 retinal expression precedes differentiation of the first neurons and persists within progenitor cells until after birth. To position Math5 in a hierarchy of retinal development, we compared Math5 and Hes1 expression in wild-type and Pax6-deficient (Sey) embryos. Math5 expression is downregulated in Sey/+ eyes and abolished in Sey/Sey eye rudiments, whereas the bHLH gene Hes1 is upregulated in a similar dose-dependent manner. These results link Pax6 to the process of retinal neurogenesis and provide the first molecular correlate for the dosage-sensitivity of the Pax6 phenotype. During retinogenesis, Math5 is expressed significantly before NeuroD, Ngn2 or Mash1. To test whether these bHLH genes influence the fates of distinct classes of retinal neurons, we ectopically expressed Math5 and Mash1 in Xenopus retinal progenitors. Unexpectedly, lipofection of either mouse gene into the frog retina caused an increase in differentiated bipolar cells. Directed expression of Math5, but not Xath5, in Xenopus blastomeres produced an expanded retinal phenotype. We propose that Math5 acts as a proneural gene, but has properties different from its most closely related vertebrate family member, Xath5.


Development ◽  
2000 ◽  
Vol 127 (14) ◽  
pp. 3021-3030 ◽  
Author(s):  
L. Cai ◽  
E.M. Morrow ◽  
C.L. Cepko

To investigate the role(s) of basic helix-loop-helix genes (bHLH) genes in the developing murine cerebral cortex, Mash1, Math2, Math3, Neurogenin1 (Ngn1), Ngn2, NeuroD, NeuroD2 and Id1 were transduced in vivo into the embryonic and postnatal cerebral cortex using retrovirus vectors. The morphology and location of infected cells were analyzed at postnatal stages. The data indicate that a subset of bHLH genes are capable of regulating the choice of neuronal versus glial fate and that, when misexpressed, they can be deleterious to the survival of differentiating neurons, but not glia.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1292
Author(s):  
Yu Chen ◽  
Peihuang Zhu ◽  
Fan Wu ◽  
Xiaofeng Wang ◽  
Jinfeng Zhang ◽  
...  

The basic helix-loop-helix (bHLH) protein transcription factor family is the most widely distributed transcription factor family in eukaryotes. Members of this family play important roles in secondary metabolic biosynthesis, signal transduction, and plant resistance. Research on the bHLH family in animals is more extensive than that in plants, and members of the family in plants are classified according to the classification criteria for those in animals. To date, no research on the bHLH gene family in Pinus massoniana (Masson pine) has been reported. In this study, we identified 88 bHLH genes from four transcriptomes of Masson pine and performed bioinformatics analysis. These genes were divided into 10 groups in total. RT-PCR analysis revealed that the expression levels of the six genes increased under abiotic stress and hormone treatments. These findings will facilitate further studies on the functions of bHLH transcription factors.


2001 ◽  
Vol 1 ◽  
pp. 396-426 ◽  
Author(s):  
Michel Vervoort ◽  
Valerie Ledent

Basic Helix-Loop-Helix (bHLH) transcription factors control various aspects of the formation of the nervous system in the metazoans. In Drosophila some bHLH (such as the achaete-scuteatonal, and amos genes) act as proneural genes, directing ectodermal cells toward a neural fate. Their vertebrate orthologs, however, probably do not assume such a neural determination function, but rather control the decision made by neural precursors to generate neurons and not glial cells, as well as the progression of neuronal precursors toward differentiation into mature neurons. The proneural function of Drosophila bHLH genes may be an innovation that occurs in the evolutive lineage that leads to arthropods. In addition, although neural bHLH appear to be involved in the specification of neuronal identities, they probably do not confer by themselves neuronal type-specific properties to the cells. Rather, neural bHLH allow neural cells to correctly interpret specification and positional cues provided by other factors. Although bHLH genes are often expressed in complementary subsets of neural cells and/or expressed sequentially in those cells, the coding regions of the various neural bHLH appear largely interchangeable. We propose that the specific expression patterns have been acquired, following gene duplications, by subfunctional-ization, i.e., the partitioning of ancestral expression patterns among the duplicates and, by extension, we propose that subfunctionalization is a key process to understand the evolution of neural bHLH genes.


Sign in / Sign up

Export Citation Format

Share Document