scholarly journals Synthetic Seed Technology Development and Production Studies for Storage, Transport, and Industrialization of Bracken Spores

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1079
Author(s):  
Bo Kook Jang ◽  
Ju Sung Cho ◽  
Cheol Hee Lee

Bracken fern (Pteridium aquilinum var. latiusculum (Desv.) Underw. ex A. Heller) has long been grown industrially in South Korea. Conventional propagation methods, including planting rhizomes and in vitro seedling culture, are labor intensive and expensive, and thus not commercially suitable. We aimed to develop a system to produce synthetic seeds using fern spores (SFS). Synthetic seeds were prepared by mixing bracken spores and alginate matrix. Spore germination and gametophyte and sporophyte growth and development from SFS proceeded normally. Spore density affected gametophyte and sporophyte numbers. SFS prepared using cold (4 °C) long-term storage spores (even 7-year-old spores) could effectively form sporophytes. The highest germination was observed at 25 °C. Soaking-treated SFS successfully formed sporophytes, even after 30 days of storage at 4 °C; indeed, sporophytes formed even after five days of storage at 25 °C during transport conditions. SFS were sown in plug trays for commercial use. Young sporophytes grown from plug seedlings were greenhouse cultivated, and transplanting within eight weeks was effective for root growth and growing-point formation. Developing synthetic seeds is a feasible solution for facilitating efficient transport and the handling of small-sized fern spores; furthermore, this SFS technology provides the basis for fern seedling culture and fern spore industrialization.

2011 ◽  
Vol 10 (40) ◽  
pp. 7820-7824 ◽  
Author(s):  
Asmah Nor ◽  
H ◽  
Hasnida Nor ◽  
H ◽  
Zaimah Nashatul ◽  
...  

Author(s):  
D. L. C. K. Fonseka ◽  
W. W. U. I. Wickramaarachchi ◽  
R. P. S. Madushani

The black-oil tree (Celastrus paniculatus Willd) is a highly valued medicinal plant species belong to the Celastraceae family, known as Jyothishmathi in Ayurveda and Duhundu in Sri Lanka and grows as a perennial vine. It is an endangered medicinal plant species recorded in the red list of endangered fauna and flora of Sri Lanka in 1999. The seed oil of Celastrus paniculatus contains sesquiterpene alkaloids namely; celapagine, celapanigine, celapanine and celastrol, used in traditional system of medicine for various disorders and because of its high pharmaceutical value, plants are over exploited in natural habitats. Owing to poor seed germination and lack of successful vegetative propagation methods, domestication and commercial planting of this important medicinal plant species to meet the demand seems impossible. Therefore, it is of high importance to develop a reliable and efficient in vitro propagation to produce black oil plants for commercial use. In this study, it was attempted to produce synthetic seeds of Celestrus paniculatus via in vitro multiple shoot proliferation. Nodal segment explants were collected from freshly emerged age of sprouts, surface sterilized and cultured in Murashige and Skoog medium supplemented with different 6-benzylaminopurine (BAP) and Thidiazuron (TDZ) concentrations for shoot induction. The highest soot proliferation rate; 25 shoot tips/explant were observed with 0.1 mg/L TDZ. Induced shoot tips were used for synthetic seed production after encapsulating with BAP and a-naphthalene acetic (NAA) enriched sodium alginate. Shoot tip encapsulated beads produced with 4% sodium alginate were firm, clear, round and uniform in size and easy to handle. The influence of growth regulators (BAP and NAA) and storage period on the germination of encapsulated shoot tips was studied to evaluate the success of encapsulated shoot tips as a propagule. The beads germinated with 2 mg/L BAP and 0.2 mg/L NAA provided 80% in vitro germination percentage. Shoot tips of synthetic seeds remained green and healthy after storage at 5°C for a period of 8 weeks. Current findings suggest that encapsulated micro shoots (synthetic seeds) could be produced successfully, as the first step in domestication and conservation of Celastrus paniculatus. Further studies required on rooting of micro shoots, acclimatization and transferring of plantlets produced from synthetic seeds to in vivo conditions for domestication and conservation purposes.


2016 ◽  
Vol 83 (2) ◽  
Author(s):  
. SUMARYONO ◽  
Rizka T SAPTARI

Abstract         Synthetic seed technology has been developed to combine the practical use of ordinary seeds and clonal plant materials. Single somatic embryos of tea (Camellia sinensis L.) clone GMB 9 were encap-sulated using sodium alginate and CaCl2 at different concentrations to produce synthetic seeds.  Encapsulating matrices with and without somatic embryos were made of WP medium and 20 g/L sucrose with   1, 2 or 3%  sodium alginate and 50 or 100 mM CaCl2. Encapsulating matrices without somatic embryos were then tested its physical characteristics, whereas the capsules with somatic embryos were observed its germination rate and secondary embryo formation every week up to six weeks. The results showed that the concentrations of sodium alginate and CaCl2 were affected significantly the physical characteristics of encap-sulating matrix produced. The sufficient level of hardness and highest germination rate was obtained from 2% sodium alginate and 50 mM CaCl2. Sodium alginate at 1% or less produced soft, leaky and oval encapsulating matrices which were not suitable for synthetic seeds. Sodium alginate 3% and 100 mM CaCl2  produced rounded and very hard encapsulating matrices and inhibited the germination of somatic embryos. Germination rates of tea synthetic seeds and somatic embryos without encapsulation were 5 to 20% after six weeks. Abstrak         Teknologi benih sintetik dikembangkan untuk memadukan kepraktisan penggunaan benih biasa dengan bahan tanam klonal. Embrio somatik tunggal dari tanaman teh (Camellia sinensis L.) klon GMB 9 dienkapsulasi menggunakan natrium alginat   dan CaCl2 untuk membuat benih sintetik. Matriks kapsul dengan dan tanpa embrio somatik dibuat dari medium WP dengan sukrosa 20 g/L dicampur dengan natrium alginat 1, 2, atau 3% dan CaCl2 50  atau 100 mM.  Matriks  kapsul  tanpa embrio somatik kemudian diuji sifat fisiknya, sedangkan matriks kapsul dengan embrio somatik diamati daya kecambah dan pembentukan embrio somatik sekunder setiap minggu sampai dengan enam minggu. Hasil penelitian menunjukkan bahwa konsentrasi natrium alginat dan CaCl2 sangat berpengaruh terhadap sifat fisik matriks kapsul yang dihasilkan. Tingkat kekerasan yang memadai dan menghasilkan persentase perkecambahan yang tinggi diperoleh dengan alginat 2% dan CaCl2 50 mM. Natrium alginat pada konsentrasi 1% atau kurang menghasilkan matriks kapsul yang  lunak, mudah bocor dan berbentuk lonjong sehingga tidak sesuai untuk benih sintetik. Natrium alginat konsentrasi 3% pada larutan CaCl2 100 mM menghasilkan benih sintetik yang bulat, sangat keras dan menghambat perkecambahan embrio somatik teh.  Daya kecambah benih sintetik dan embrio somatik teh tanpa enkapsulasi berkisar  5 - 20% setelah enam minggu. 


Author(s):  
Priyanka Sharma ◽  
Bidhan Roy

Biotechnological tools are useful for true-to-type propagation. Shoot tips encapsulation is potential for plant development from pre-existing meristematic tissue. MS medium fortified with 1 and 2 mg/L of BAP (6-bezylaminopurine) was found to be suitable for in vitro mass-multiplication of plantlets (10.18 and 13.05 plantlets/explant, respectively) of Citrus jambhiri from nodal segments. Nodal segments were more appropriate than the shoot tips for in vitro multiplication of plantlets. Synthetic seeds were prepared using 2.5% sodium alginate dropping into 3.0% CaCl2 solution. Maximum germination was recorded when beaded shoot tips were cultured on MS medium fortified with 1 and 2 mg/L of BAP (96.67 and 100.00%, respectively). However, the germination of synthetic seeds was found to be comparatively high than the earlier findings. The results support the use of encapsulated unipolar explants for synthetic seed preparation. These type of capsules could be useful in exchange of sterile material between laboratories, germplasm conservation and direct plant propagation.


2015 ◽  
Vol 7 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Mehpara MAQSOOD ◽  
Abdul MUJIB ◽  
Mir KHUSRAU

An efficient somatic embryo encapsulation and in vitro plant regeneration technique were established with Caladium bicolor, an important ornamental plant.Tuber derived embryogenic callus (95.50%) was obtained on Murashige and Skoog (MS) medium amended with 0.5 mg L-1 α-Naphthalene acetic acid (NAA) + 0.5 mg L-1 6-Benzyladenine (BA). The embryogenic callus later differentiated into somatic embryos in the same plant growth regulators (PGRs) added medium (NAA and BA). The induced embryos matured and developed into plantlets in NAA and BA added media; maximum plantlets development was observed at 1.0 mg L-1 NAA + 1.0 mg L-1 BA supplemented medium. Synthetic seeds were produced by encapsulating embryos in gel containing 3.0% sucrose + 3.0% sodium alginate and 100 mM of calcium chloride.The highest synthetic seed germination (97.6%) was observed on medium supplemented with 1.0 mg L-1 NAA + 1.0 mg L-1 BA. The synthetic seeds were kept at low temperatures for storage; the encapsulated beads were viable and demonstrated good germination even after 12 weeks of storage at 4 °C. The plantlet recovery frequency was however declined with time. The synthetic seed derived plantlets were morphologically similar to the mother plant.


2016 ◽  
Vol 83 (2) ◽  
Author(s):  
. SUMARYONO ◽  
Rizka T SAPTARI

Abstract         Synthetic seed technology has been developed to combine the practical use of ordinary seeds and clonal plant materials. Single somatic embryos of tea (Camellia sinensis L.) clone GMB 9 were encap-sulated using sodium alginate and CaCl2 at different concentrations to produce synthetic seeds.  Encapsulating matrices with and without somatic embryos were made of WP medium and 20 g/L sucrose with   1, 2 or 3%  sodium alginate and 50 or 100 mM CaCl2. Encapsulating matrices without somatic embryos were then tested its physical characteristics, whereas the capsules with somatic embryos were observed its germination rate and secondary embryo formation every week up to six weeks. The results showed that the concentrations of sodium alginate and CaCl2 were affected significantly the physical characteristics of encap-sulating matrix produced. The sufficient level of hardness and highest germination rate was obtained from 2% sodium alginate and 50 mM CaCl2. Sodium alginate at 1% or less produced soft, leaky and oval encapsulating matrices which were not suitable for synthetic seeds. Sodium alginate 3% and 100 mM CaCl2  produced rounded and very hard encapsulating matrices and inhibited the germination of somatic embryos. Germination rates of tea synthetic seeds and somatic embryos without encapsulation were 5 to 20% after six weeks. Abstrak         Teknologi benih sintetik dikembangkan untuk memadukan kepraktisan penggunaan benih biasa dengan bahan tanam klonal. Embrio somatik tunggal dari tanaman teh (Camellia sinensis L.) klon GMB 9 dienkapsulasi menggunakan natrium alginat   dan CaCl2 untuk membuat benih sintetik. Matriks kapsul dengan dan tanpa embrio somatik dibuat dari medium WP dengan sukrosa 20 g/L dicampur dengan natrium alginat 1, 2, atau 3% dan CaCl2 50  atau 100 mM.  Matriks  kapsul  tanpa embrio somatik kemudian diuji sifat fisiknya, sedangkan matriks kapsul dengan embrio somatik diamati daya kecambah dan pembentukan embrio somatik sekunder setiap minggu sampai dengan enam minggu. Hasil penelitian menunjukkan bahwa konsentrasi natrium alginat dan CaCl2 sangat berpengaruh terhadap sifat fisik matriks kapsul yang dihasilkan. Tingkat kekerasan yang memadai dan menghasilkan persentase perkecambahan yang tinggi diperoleh dengan alginat 2% dan CaCl2 50 mM. Natrium alginat pada konsentrasi 1% atau kurang menghasilkan matriks kapsul yang  lunak, mudah bocor dan berbentuk lonjong sehingga tidak sesuai untuk benih sintetik. Natrium alginat konsentrasi 3% pada larutan CaCl2 100 mM menghasilkan benih sintetik yang bulat, sangat keras dan menghambat perkecambahan embrio somatik teh.  Daya kecambah benih sintetik dan embrio somatik teh tanpa enkapsulasi berkisar  5 - 20% setelah enam minggu. 


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hamidou F. Sakhanokho ◽  
Cecil T. Pounders ◽  
Eugene K. Blythe

Synthetic seeds were formed from shoot tips of twoin vitrogrownBegoniacultivars using 3% sodium alginate in Murashige and Skoog medium (MS) salt solution as the gel matrix and 100 mM calcium chloride for complexation. Synthetic seed formation was achieved by releasing the sodium alginate/explant combination into 100 mM calcium chloride (CaCl2·H2O) solution for 30 or 45 min. Both control and encapsulated shoots were transferred into sterile Petri dishes and stored at 4°C or 22°C for 0, 2, 4, 6, or 8 weeks. Conversion of synthetic seeds into plantlets for both storage environments was assessed in MS medium or peat-based substrate. No significant difference was found between the 30 and 45 min CaCl2·H2O treatments or the two cultivars. Encapsulation of explants improved survival rate over time irrespective of the medium type or storage environment. Survival rates of 88, 53, 28, and 11% for encapsulated microshoots versus 73, 13, 0, and 0% for control explants were achieved in microshoots stored for 2, 4, 6, and 8 weeks, respectively. The best results were obtained when synthetic seeds were stored at 4°C and germinated on MS medium. Regenerated plantlets were successfully established in potting soil.


2020 ◽  
Vol 33 (02) ◽  
pp. 276-285
Author(s):  
Fereshteh Abbasi ◽  
Ahmad Majd ◽  
Farhad Farahvash ◽  
Taher Nejadsattari ◽  
Alireza Tarinejad

Apical buds obtained from Asparagus plant vitro culture and somatic embryos obtained from stem cultivation, explants in MS medium supplemented with mg¹ᶫ 1, 2, 4-D and mg¹ᶫ 1 and Kinetin have been used in this research to produce artificial seeds. We encapsulated apical buds and somatic embryo using 2% sodium alginate and calcium chloride to prepare the artificial seeds. We placed artificial seeds at room temperature (about 25 ° C), in the cold, the temperature of 4 ° C and -18 ° C for different times (15,30,60,90 days) and evaluated the growing power of these seeds in MS and ½MS mediums for further investigations about the viability of seeds. The highest conversion percentage of seedlings in encapsulated embryos (70.01) was related to seed harvested from embryos treated with BA and the highest conversion percentage of seedlings in apical buds (96.54) was obtained from cultivated untreated seeds in MS medium. Encapsulated arteries and buds maintained germination energy and viability with increasing storage time after 90 days of storage at 4 and 25 ° C despite viability reduction while un-capsulated embryos and buds completely lost viability after 60 days of storage at 4 and 25 ° C and seeds stored at -18 ° C completely lost viability after 15 days of storage. In general, the percentage of seed germination and conversion to seedling is higher in seeds cultivated in MS medium compared to seeds cultivated in ½MS medium.


Sign in / Sign up

Export Citation Format

Share Document