scholarly journals The Geomagnetic Field (GMF) Modulates Nutrient Status and Lipid Metabolism during Arabidopsis thaliana Plant Development

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1729
Author(s):  
Monirul Islam ◽  
Gianpiero Vigani ◽  
Massimo E. Maffei

The Geomagnetic field (GMF) is a typical component of our planet. Plant perception of the GMF implies that any magnetic field (MF) variation would induce possible metabolic changes. In this work was we assessed the role of the GMF on Arabidopsis thaliana Col0 mineral nutrition and lipid metabolism during plant development. We reduced the local GMF (about 40 μT) to Near Null Magnetic Field (NNMF, about 30 nT) to evaluate the effects of GMF on Arabidopsis in a time-course (from rosette to seed-set) experiment by studying the lipid content (fatty acids, FA; and surface alkanes, SA) and mineral nutrients. The expression of selected genes involved in lipid metabolism was assessed by Real-Time PCR (qPCR). A progressive increase of SA with carbon numbers between 21 and 28 was found in plants exposed to NNMF from bolting to flowering developmental stages, whereas the content of some FA significantly (p < 0.05) increased in rosette, bolting and seed-set developmental stages. Variations in SA composition were correlated to the differential expression of several Arabidopsis 3-ketoacyl-CoAsynthase (KCS) genes, including KCS1, KCS5, KCS6, KCS8, and KCS12, a lipid transfer protein (LTPG1) and a lipase (LIP1). Ionomic analysis showed a significant variation in some micronutrients (Fe, Co, Mn and Ni) and macronutrients (Mg, K and Ca) during plant development of plants exposed to NNMF. The results of this work show that A. thaliana responds to variations of the GMF which are perceived as is typical of abiotic stress responses.

2021 ◽  
Author(s):  
Catriona H Walker ◽  
Cara D Wheeldon ◽  
Tom Bennett

Abstract The production of seed in flowering plants is complicated by the need to first invest in reproductive shoots, inflorescences, flowers and fruit. Furthermore, in many species, it will be months between plants generating flowers and setting seed. How can plants therefore produce an optimal seed-set relative to environmental resources when the ‘reproductive architecture’ that supports seed-set needs to be elaborated so far in advance? Here, we address this question by investigating the spatio-temporal control of reproductive architecture in Arabidopsis (Arabidopsis thaliana) and Brassica napus. We show that resource- and resource-related signals such as substrate volume play a key role in determining the scale of reproductive effort, and that this is reflected in the earliest events in reproductive development, which broadly predicts the subsequent reproductive effort. We show that a series of negative feedbacks both within and between developmental stages prevent plants from over-committing to early stages of development. These feedbacks create a highly plastic, homeostatic system in which additional organs can be produced in the case of reproductive failure elsewhere in the system. We propose that these feedbacks represent an ‘integrated dominance’ mechanism that allows resource use to be correctly sequenced between developmental stages to optimise seed set.


2020 ◽  
Vol 223 (18) ◽  
pp. jeb164921
Author(s):  
Sönke Johnsen ◽  
Kenneth J. Lohmann ◽  
Eric. J. Warrant

ABSTRACTDiverse organisms use Earth's magnetic field as a cue in orientation and navigation. Nevertheless, eliciting magnetic orientation responses reliably, either in laboratory or natural settings, is often difficult. Many species appear to preferentially exploit non-magnetic cues if they are available, suggesting that the magnetic sense often serves as a redundant or ‘backup’ source of information. This raises an interesting paradox: Earth's magnetic field appears to be more pervasive and reliable than almost any other navigational cue. Why then do animals not rely almost exclusively on the geomagnetic field, while ignoring or downplaying other cues? Here, we explore a possible explanation: that the magnetic sense of animals is ‘noisy’, in that the magnetic signal is small relative to thermal and receptor noise. Magnetic receptors are thus unable to instantaneously acquire magnetic information that is highly precise or accurate. We speculate that extensive time-averaging and/or other higher-order neural processing of magnetic information is required, rendering the magnetic sense inefficient relative to alternative cues that can be detected faster and with less effort. This interpretation is consistent with experimental results suggesting a long time course for magnetic compass and map responses in some animals. Despite possible limitations, magnetoreception may be maintained by natural selection because the geomagnetic field is sometimes the only source of directional and/or positional information available.


Author(s):  
Nikita Poddar ◽  
Amarjeet Singh ◽  
Shailesh Kumar

Calcineurin B-like proteins (CBL)-interacting protein kinases (CIPKs) by interacting with CBLs regulate developmental processes, hormone signalling transduction and mediate stress responses in plants. Although the genome of chickpea is available, information of CIPK gene family has been missing in chickpea. Here, a total of 22 CIPK encoding genes were identified in chickpea and characterized by in silico methods. We found a high structural conservation in chickpea CIPK family. Our analysis showed that chickpea CIPKs have evolved with dicots from common ancestors, and extensive gene duplication events have played an important role in evolution and expansion of CIPK family in chickpea. Most chickpea CIPK proteins localize in cytoplasm and nucleus. Promoter analysis revealed various cis-regulatory elements related to plant development, hormone signaling and abiotic stresses. Expression analysis indicated that CIPKs are significantly expressed in a spectrum of developmental stages, tissue/organs that hinted their important role in plant development. Several CIPK genes had specific and overlapping expressions in different abiotic stresses and seed development stages, suggesting the important role of CIPK family in abiotic stress signaling, and seed development in chickpea. Thus, this study provides the avenue for detailed functional characterization of CIPK family in chickpea and other legume crops.


2002 ◽  
Vol 30 (4) ◽  
pp. 481-488 ◽  
Author(s):  
Jean-Emmanuel Faure ◽  
Nicolas Rotman ◽  
Philippe Fortune ◽  
Christian Dumas

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1261
Author(s):  
Péter Pálfi ◽  
László Bakacsy ◽  
Henrietta Kovács ◽  
Ágnes Szepesi

Hypusination is a unique posttranslational modification of eIF5A, a eukaryotic translation factor. Hypusine is a rare amino acid synthesized in this process and is mediated by two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Despite the essential participation of this conserved eIF5A protein in plant development and stress responses, our knowledge of its proper function is limited. In this review, we demonstrate the main findings regarding how eIF5A and hypusination could contribute to plant-specific responses in growth and stress-related processes. Our aim is to briefly discuss the plant-specific details of hypusination and decipher those signal pathways which can be effectively modified by this process. The diverse functions of eIF5A isoforms are also discussed in this review.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Sabrina Sanchez ◽  
Johannes Wicht ◽  
Julien Bärenzung

Abstract The IGRF offers an important incentive for testing algorithms predicting the Earth’s magnetic field changes, known as secular variation (SV), in a 5-year range. Here, we present a SV candidate model for the 13th IGRF that stems from a sequential ensemble data assimilation approach (EnKF). The ensemble consists of a number of parallel-running 3D-dynamo simulations. The assimilated data are geomagnetic field snapshots covering the years 1840 to 2000 from the COV-OBS.x1 model and for 2001 to 2020 from the Kalmag model. A spectral covariance localization method, considering the couplings between spherical harmonics of the same equatorial symmetry and same azimuthal wave number, allows decreasing the ensemble size to about a 100 while maintaining the stability of the assimilation. The quality of 5-year predictions is tested for the past two decades. These tests show that the assimilation scheme is able to reconstruct the overall SV evolution. They also suggest that a better 5-year forecast is obtained keeping the SV constant compared to the dynamically evolving SV. However, the quality of the dynamical forecast steadily improves over the full assimilation window (180 years). We therefore propose the instantaneous SV estimate for 2020 from our assimilation as a candidate model for the IGRF-13. The ensemble approach provides uncertainty estimates, which closely match the residual differences with respect to the IGRF-13. Longer term predictions for the evolution of the main magnetic field features over a 50-year range are also presented. We observe the further decrease of the axial dipole at a mean rate of 8 nT/year as well as a deepening and broadening of the South Atlantic Anomaly. The magnetic dip poles are seen to approach an eccentric dipole configuration.


Sign in / Sign up

Export Citation Format

Share Document