New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism

2011 ◽  
Vol 50 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Shi Xiao ◽  
Mee-Len Chye
Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1729
Author(s):  
Monirul Islam ◽  
Gianpiero Vigani ◽  
Massimo E. Maffei

The Geomagnetic field (GMF) is a typical component of our planet. Plant perception of the GMF implies that any magnetic field (MF) variation would induce possible metabolic changes. In this work was we assessed the role of the GMF on Arabidopsis thaliana Col0 mineral nutrition and lipid metabolism during plant development. We reduced the local GMF (about 40 μT) to Near Null Magnetic Field (NNMF, about 30 nT) to evaluate the effects of GMF on Arabidopsis in a time-course (from rosette to seed-set) experiment by studying the lipid content (fatty acids, FA; and surface alkanes, SA) and mineral nutrients. The expression of selected genes involved in lipid metabolism was assessed by Real-Time PCR (qPCR). A progressive increase of SA with carbon numbers between 21 and 28 was found in plants exposed to NNMF from bolting to flowering developmental stages, whereas the content of some FA significantly (p < 0.05) increased in rosette, bolting and seed-set developmental stages. Variations in SA composition were correlated to the differential expression of several Arabidopsis 3-ketoacyl-CoAsynthase (KCS) genes, including KCS1, KCS5, KCS6, KCS8, and KCS12, a lipid transfer protein (LTPG1) and a lipase (LIP1). Ionomic analysis showed a significant variation in some micronutrients (Fe, Co, Mn and Ni) and macronutrients (Mg, K and Ca) during plant development of plants exposed to NNMF. The results of this work show that A. thaliana responds to variations of the GMF which are perceived as is typical of abiotic stress responses.


2016 ◽  
Vol 63 ◽  
pp. 165-181 ◽  
Author(s):  
Zhi-Yan Du ◽  
Tatiana Arias ◽  
Wei Meng ◽  
Mee-Len Chye

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1261
Author(s):  
Péter Pálfi ◽  
László Bakacsy ◽  
Henrietta Kovács ◽  
Ágnes Szepesi

Hypusination is a unique posttranslational modification of eIF5A, a eukaryotic translation factor. Hypusine is a rare amino acid synthesized in this process and is mediated by two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Despite the essential participation of this conserved eIF5A protein in plant development and stress responses, our knowledge of its proper function is limited. In this review, we demonstrate the main findings regarding how eIF5A and hypusination could contribute to plant-specific responses in growth and stress-related processes. Our aim is to briefly discuss the plant-specific details of hypusination and decipher those signal pathways which can be effectively modified by this process. The diverse functions of eIF5A isoforms are also discussed in this review.


The Analyst ◽  
2021 ◽  
Author(s):  
Chao Zhang ◽  
Asta Žukauskaitė ◽  
Ivan Petřík ◽  
Aleš Pěnčík ◽  
Martin Hönig ◽  
...  

Phytohormones (plant hormones) are a group of small signalling molecules that act as important endogenous regulators in the plant development and stress responses. Previous research has identified phytohormone species, jasmonates,...


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fuyun Hou ◽  
Taifeng Du ◽  
Zhen Qin ◽  
Tao Xu ◽  
Aixian Li ◽  
...  

Abstract Background Sweetpotato (Ipomoea batatas (L.) Lam.) serves as an important food source for human beings. β-galactosidase (bgal) is a glycosyl hydrolase involved in cell wall modification, which plays essential roles in plant development and environmental stress adaptation. However, the function of bgal genes in sweetpotato remains unclear. Results In this study, 17 β-galactosidase genes (Ibbgal) were identified in sweetpotato, which were classified into seven subfamilies using interspecific phylogenetic and comparative analysis. The promoter regions of Ibbgals harbored several stress, hormone and light responsive cis-acting elements. Quantitative real-time PCR results displayed that Ibbgal genes had the distinct expression patterns across different tissues and varieties. Moreover, the expression profiles under various hormonal treatments, abiotic and biotic stresses were highly divergent in leaves and root. Conclusions Taken together, these findings suggested that Ibbgals might play an important role in plant development and stress responses, which provided evidences for further study of bgal function and sweetpotato breeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bruno Paes Melo ◽  
Isabela Tristan Lourenço-Tessutti ◽  
Otto Teixeira Fraga ◽  
Luanna Bezerra Pinheiro ◽  
Camila Barrozo de Jesus Lins ◽  
...  

AbstractNACs are plant-specific transcription factors involved in controlling plant development, stress responses, and senescence. As senescence-associated genes (SAGs), NACs integrate age- and stress-dependent pathways that converge to programmed cell death (PCD). In Arabidopsis, NAC-SAGs belong to well-characterized regulatory networks, poorly understood in soybean. Here, we interrogated the soybean genome and provided a comprehensive analysis of senescence-associated Glycine max (Gm) NACs. To functionally examine GmNAC-SAGs, we selected GmNAC065, a putative ortholog of Arabidopsis ANAC083/VNI2 SAG, and the cell death-promoting GmNAC085, an ANAC072 SAG putative ortholog, for analyses. Expression analysis of GmNAC065 and GmNAC085 in soybean demonstrated (i) these cell death-promoting GmNACs display contrasting expression changes during age- and stress-induced senescence; (ii) they are co-expressed with functionally different gene sets involved in stress and PCD, and (iii) are differentially induced by PCD inducers. Furthermore, we demonstrated GmNAC065 expression delays senescence in Arabidopsis, a phenotype associated with enhanced oxidative performance under multiple stresses, higher chlorophyll, carotenoid and sugar contents, and lower stress-induced PCD compared to wild-type. In contrast, GmNAC085 accelerated stress-induced senescence, causing enhanced chlorophyll loss, ROS accumulation and cell death, decreased antioxidative system expression and activity. Accordingly, GmNAC065 and GmNAC085 targeted functionally contrasting sets of downstream AtSAGs, further indicating that GmNAC85 and GmNAC065 regulators function inversely in developmental and environmental PCD.


2018 ◽  
Vol 81 ◽  
pp. 129-140 ◽  
Author(s):  
Abhishek K. Singh ◽  
Binod Aryal ◽  
Xinbo Zhang ◽  
Yuhua Fan ◽  
Nathan L. Price ◽  
...  

2019 ◽  
Vol 14 (10) ◽  
pp. e1644596 ◽  
Author(s):  
Xi Sun ◽  
Guoliang Han ◽  
Zhe Meng ◽  
Lin Lin ◽  
Na Sui

Sign in / Sign up

Export Citation Format

Share Document