scholarly journals Effect of the Surface Hydrophobicity Degree on the In Vitro Release of Polar and Non-Polar Drugs from Polyelectrolyte Matrix Tablets

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1313
Author(s):  
Cristhian Yarce ◽  
Juan Echeverri ◽  
Constain Salamanca

This work is the continuation of a series of studies focused on establishing the relationship between the surface thermodynamic properties of polyelectrolyte matrix tablets and drug release mechanisms. In this case, two model drugs with different polarity features, such as carbamazepine (non-polar) and metoprolol succinate (polar) were used in combination with polymeric material hydroxypropyl-methyl cellulose (HPMC) and two polyelectrolytes derived from maleic anhydride corresponding to the sodium salts of poly(maleic acid-alt-ethylene) and poly(maleic acid-alt-octadecene) named PAM-0Na and PAM-18Na, respectively. The polymers were obtained and characterized as reported previously. Surface studies were performed by the sessile drop method, whilst the surface free energy was determined through Owens, Wendt, Rable and Kaeble (OWRK) semi-empirical model. By contrast, the drug release studies were performed by in vitro dissolution tests, where data were analyzed through dissolution efficiency. The results showed that, depending on the drug polarity, type and polymer proportion, surface properties and drug release processes are significantly affected.

1970 ◽  
Vol 1 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Tasbira Jeseem ◽  
Rumana Jahangir ◽  
DM Mizanur Rahman ◽  
Abu Shara Shamsur Rouf

An attempt was to formulate the oral sustained release Metformin hydrochloride matrix tablets by using hydroxyl methyl cellulose polymer (HPMC) as rate controlling factor and to evaluate drug release parameters as per various release kinetic models. The tablets were prepared by direct compression method. The granules were evaluated for angle of repose, loose bulk density, tapped bulk density, compressibility index, total porosity, drug content etc. and showed satisfactory results. The tablets were subjected to thickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolution study was carried out for 8 hours using United States Pharmacopoeia USP 2 (paddle-type dissolution apparatus) in phosphate buffer (pH 7.4) as dissolution media. All the tablet formulations showed acceptable pharmacotechnical properties and complied with pharmacopoeial specifications. The release mechanisms were explored and explained with zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The results indicated that a decrease in release kinetics of the drug was observed by increasing the polymer concentration. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport, which was only dependent on the type and amount of polymer used. The drug release followed both diffusion and erosion mechanism in all cases. Besides, this study explored both of the optimum concentration and the effect of polymer on drug release pattern from the tablet matrix for 8 hours period. Key Words: Metformin HCl, Sustained release, Hydrophilic matrix, HPMC, Direct compression   doi:10.3329/sjps.v1i1.1808 S. J. Pharm. Sci. 1(1&2): 51-56


Author(s):  
Ravi Kumar Kota ◽  
Suresh Gande

The present research was aimed to prepare Olmesartan medoxomil floating microspheres for controlled release using polymers such as sodium alginate, sodium bicarbonate, calcium chloride, Hydroxy propyl methyl cellulose (HPMC K4M, K15M), Olibanum gum and Xanthan gum by ionotropic gelation method. The prepared microspheres were evaluated for the percent drug content, entrapment efficiency, percentage buoyancy and in vitro dissolution studies. Among all the formulations F14 was selected as optimized formulation based on the micromeretic and physico-chemical parameters including drug release studies. Percentage buoyancy of optimized formulation was found to be 96.45%. In vitro release study of formulation F14 showed 98.11% drug release after 12 h in a controlled manner, which is desired for disease like Hypertension.  The reference standard shows the drug release of 94.12% within 12 h. Drug and excipient compatibility studies were carried out by FT-IR and no interactions were observed. The SEM of microspheres show a hollow spherical structure with a rough surface morphology. Some of microspheres showed dented surface structure but they showed good floating ability on medium indicated intact surface. The shell of microspheres also showed some porous structure which might be due to release of carbon dioxide. F14 followed zero order, Higuchi and Korsmeyer Peppas kinetics indicating diffusion controlled with non-fickian (anomalous) transport, projecting that its active ingredient are delivered by coupled diffusion and erosion. From these results, it can be concluded that the polymer proportion controlled the drug release from the olmesartan floating microspheres. 


Author(s):  
Nagasamy Venkatesh D ◽  
Sankar S ◽  
S N Meyyanathan ◽  
K Elango ◽  
B Suresh ◽  
...  

 The objective of the present investigation was to develop and evaluate sustained release matrix tablets of prochlorperazine maleate employing different types and levels of hydrophilic matrix agents namely hydroxyl propyl methyl cellulose (HPMC), carbopol and combination of these polymers by wet granulation technique. Prior to compression process, the prepared granules were evaluated for its flow and compression characteristics. The in vitro dissolution of the newly formulated sustained release tablets were compared with standard formulation. The excipients used in this study did not alter the physicochemical properties of the drug, as indicated by the thermal analysis using differential scanning calorimetry technique. The flow and compression characteristics of the prepared granules significantly improved by virtue of granulation process. Also, the prepared matrix tablets showed good mechanical properties in terms of hardness and friability. HPMC based tablet formulations alone showed high release retarding efficiency as compared to carbopol, carbopol and HPMC combinations. The studies indicated that the drug release can be modulated by varying concentrations of polymers. Mathematical analysis of the release kinetics indicated the nature of the drug release from the matrix tablets followed quasi-fickian obeying first order kinetics. 


2021 ◽  
Vol 11 (5) ◽  

Methimazole is active pharmaceutical ingredient effectively utilized in hyperthyroidism. Methimazole inhibits peroxidase as well as iodine interactions with thyroglobulin to produce triiodothyronine with thyroxine. Methimazole shows very low protein binding (1-10%) bounds to plasma proteins and easily metabolized by liver. In this investigation, efforts given to develop a sustained release matrix tablet of Methimazole. Sustained release drug delivery systems are for a maximum of 24 hours clinical effectiveness. Such systems are primarily for the drugs of short elimination half-life. However, drugs with long half-life also qualify if a reduction in steady state fluctuation is desired. Matrix tablets of methimazole were prepared by utilizing direct compression method. HPMC along with Sodium carboxy methyl cellulose used to retard drug release from the dosage form. Matrix tablets of methimazole were evaluated for different quality control test to improve quality of the product. In vitro release study of methimazole matrix tablets shows that polymer percentage used in the formula is enough to extend the release of the drug for at least 12 hr. In dissolution study of matrix of methimazole formulation F2 shows maximum drug release 97.93 % at the end of 6 hours while F1 shows least 83.64 %. Keywords: Matrix tablet, Methimazole, Sustained Release


2013 ◽  
Vol 1 (04) ◽  
pp. 89-94
Author(s):  
Shallu Sandhan ◽  
Kavita Sapra ◽  
Jitender Mor

The aim of present investigation was to enhance the solubility of glipizide (BCS Class II). Glipizide is an oral antidiabetic agent with relatively short elimination half life. Inclusion complex of Glipizide with _-cyclodextrin was prepared by kneading method and evaluated for its in-vitro release. Phase solubility studies were performed according to method reported by Higuchi and Connors which was classified as AL type characterized by apparent 1:1 stability constant. The Glipizide and Beta Cyclodextrin found to be compatible which was observed from FTIR spectra of Glipizide _- CD Complex. The dissolution study of Glipizide _- CD complex shows significant increase in the drug release than pure drug. Matrix Glipizide _- CD complex tablet complex equivalent to 10 mg Glipizide were prepared by using Hydroxy propyl methyl cellulose (HPMC), Carboxy methyl cellulose sodium (NaCMC) and Microcrytalline cellulose (MCC). The tablets were evaluated for various tests like hardness, friability, disintegration and in-vitro dissolution studies.


2015 ◽  
Vol 16 (2) ◽  
pp. 177-183
Author(s):  
Md Ziaur Rahman ◽  
Sayed Koushik Ahamed ◽  
Sujan Banik ◽  
Mohammad Salim Hossain

The present study was undertaken to develop sustained release (SR) matrix tablets of Losartan potassium, an angiotensin-II antagonist for the treatment of hypertension. The tablets were prepared by direct compression method along with Kollidon SR and Methyl Cellulose as release retardant polymers. The evaluation involves two stages- the physical properties studies of tablets and in vitro release kinetics assessment. The USP paddle method was selected to perform the dissolution test and 900 ml phosphate buffer of pH 6.8 was used as dissolution medium at 50 rpm at 370C. The release kinetics were analyzed. All the formulations followed Higuchi release kinetics. When the release data was plotted into Korsmeyer-Peppas equation, then it was confirmed that F-1, F-2, F-3, F-4 and F-5 exhibited non-fickian type drug release whereas F-6 exhibited fickian type drug release from the tablet matrix. The in-vitro release studies revealed that the formulation F-2 can be taken as an ideal or optimized formulation of sustained release tablets for 24 hours release as it fulfills all the requirements for sustained release tablet. Furthermore, when the tablets were preheated at different temperature (300C, 450C, 600C) before dissolution they showed decrease in drug release compared with ambient temperature DOI: http://dx.doi.org/10.3329/bpj.v16i2.22301 Bangladesh Pharmaceutical Journal 16(2): 177-183, 2013


Author(s):  
Sakthikumar T ◽  
Rajendran N N ◽  
Natarajan R

The present study was aimed to develop an extended release tablet of metoprolol Succinate for the treatment of hypertension.  Four extended release formulations F1-F4 were developed using varying proportions of hydroxylpropyl-methylcellulose K100M, sodium carboxy methyl cellulose and Eudragit L30 D55 by wet granulation. Five extended release formulations F5-F9 containing HPMC K100M and HPMC 5 cps in varying concentration were developed by direct compression. The physicochemical and in vitro release characteristics of all the formulations were investigated and compared. Two formulations, F7 and F8 have shown not more 25% drug release  in 1st h, 20%-40% drug release at 4th hour, 40%-60% drug release at 8th hour and not less than 80% at 20th hour and the release pattern conform with USP specification for 24 hours extended release formulation. It can be conclusively stated that optimum concentration of HPMC K100M (58%-65%) by direct compression method can yield an extended release of metoprolol succinate for 24 hours.


2011 ◽  
Vol 47 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Sathis Kumar Dinakaran ◽  
Santhos Kumar ◽  
David Banji ◽  
Harani Avasarala ◽  
Venkateshwar Rao

The purpose of this research study was to establish ziprasidone HCl NR 40 mg and trihexyphenidyl HCl SR 4mg in the form of bi-layer sustained release floating tablets. The tablets were prepared using sodium HPMC K4M / HPMC K15M as bio-adhesive polymers and sodium bicarbonate acting as a floating layer. Tablets were evaluated based on different parameters such as thickness, hardness, friability, weight variation, in vitro dissolution studies, content of active ingredient and IR studies. The physico-chemical properties of the finished product complied with the specifications. In vitro release from the formulation was studied as per the USP XXIII dissolution procedure. The formulations gave a normal release effect followed by sustained release for 12 h which indicates bimodal release of ziprasidone HCl from the matrix tablets. The data obtained was fitted to Peppas models. Analysis of n values of the Korsmeyer equation indicated that the drug release involved non-diffusional mechanisms. By the present study, it can be concluded that bi-layer tablets of ziprasidone HCl and trihexyphenidyl HCl will be a useful strategy for extending the metabolism and improving the bioavailability of Ziprasidone HCl and Trihexyphenidyl HCl.


1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


2019 ◽  
Vol 9 (4-s) ◽  
pp. 398-403
Author(s):  
Nidhi Kumari Pandey ◽  
Sailesh Kumar Ghatuary ◽  
Amit Dubey ◽  
Prabhat Kumar Jain

The objective of the present work was to develop Gastro retentive dosage forms which would remain in the stomach and upper part or GIT for a prolonged period of time thereby maximizing the drug release at desired site within the time before GRDFs left the stomach and upper part of the GIT, has provoked a great deal of increased interest in the formulation of such drug as floating drug delivery systems. Levofloxacin, (BCS class I) is a fluoroquinolone anti-bacterial agent. The rationale for the formulation of floating matrix tablet are acidic solubility of levofloxacin, residence of Halicobactor pylori mainly in sub region of stomach and the overdosing associated adverse effect due to continuous intake of drug in acute infection. A simple visible spectrophotometric method was employed for the estimation of levofloxacin at 294 nm and Beer’s law is obeyed in the concentration range of 2-10 μg /ml. Floating matrix tablet of levofloxacin was prepared by direct compression method using different polymers like hydroxyl propyl methyl cellulose (HPMC K4) and carbopol 934 as matrix formation polymers, sodium bicarbonate and citric acid was used as gas generating agents. The FTIR spectra of the levofloxacin and other excipients alone and in combination show the compatibility of the drug and excipients. Six formulations of different polymer percentages were formulated (F1-F6). Pre-compression parameters were evaluated. The influence of matrix forming agents and binary mixtures of them on levofloxacin release was investigated. The formulated tablets were characterized by hardness, friability, thickness, weight variation and in vitro drug release. The formulated tablets had acceptable physicochemical characters. The data obtained from the in-vitro dissolution studies of optimized batch F4were fitted in different models. The optimized formulation F4 showed 99.25% drug content and swelling index of 79.85 %. Drug release mechanism was found to be first order kinetics. Levofloxacin floating tablets exhibited increased gastric residence time, there by improved bioavailability and therapeutic effect of the drug.  


Sign in / Sign up

Export Citation Format

Share Document