Development and Evaluation of Olmesartan Medoxomil Controlled Release Floating Microspheres using Natural Gums

Author(s):  
Ravi Kumar Kota ◽  
Suresh Gande

The present research was aimed to prepare Olmesartan medoxomil floating microspheres for controlled release using polymers such as sodium alginate, sodium bicarbonate, calcium chloride, Hydroxy propyl methyl cellulose (HPMC K4M, K15M), Olibanum gum and Xanthan gum by ionotropic gelation method. The prepared microspheres were evaluated for the percent drug content, entrapment efficiency, percentage buoyancy and in vitro dissolution studies. Among all the formulations F14 was selected as optimized formulation based on the micromeretic and physico-chemical parameters including drug release studies. Percentage buoyancy of optimized formulation was found to be 96.45%. In vitro release study of formulation F14 showed 98.11% drug release after 12 h in a controlled manner, which is desired for disease like Hypertension.  The reference standard shows the drug release of 94.12% within 12 h. Drug and excipient compatibility studies were carried out by FT-IR and no interactions were observed. The SEM of microspheres show a hollow spherical structure with a rough surface morphology. Some of microspheres showed dented surface structure but they showed good floating ability on medium indicated intact surface. The shell of microspheres also showed some porous structure which might be due to release of carbon dioxide. F14 followed zero order, Higuchi and Korsmeyer Peppas kinetics indicating diffusion controlled with non-fickian (anomalous) transport, projecting that its active ingredient are delivered by coupled diffusion and erosion. From these results, it can be concluded that the polymer proportion controlled the drug release from the olmesartan floating microspheres. 

2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 312-318
Author(s):  
Yerikala Ramesh ◽  
Abhilash Kaki Rohan ◽  
Balasaradhi Koorapati ◽  
P. Sudarsanam

Abstract: The aim of the present study was to formulate and evaluate Almotriptan pellets. Almotriptan controlled release pellets were prepared by Solution layering technique by using croscarmellose and povidone in former case and three different polymers HPMC K 100, Ethyl cellulose and Eudragit RS 100 as rate controlling polymer in three different ratios like 1:1, 1:1.5 and 1:2 to achieve desired release in later case. Evaluation was performed according to the Pharmacopoeia standards including Drug excipients compatibility, Percentage yield, Particle size distribution, Drug content analysis and in-vitro release study. The best results were found to be using Almotriptan and Eudragit RS 100 in 1:2 ratios. A broad variety of drug release pattern could be achieved by variation of polymers ratios which was optimized to match the target release profile. In comparison of in-vitro release studies for different controlled release formulations, F9 releases 98.54% of drug at the end of 12th hour and was considered as best formulation. Stability study has shown no significant change in the drug content analysis and in-vitro dissolution study of best formulation even after 6 months. Keywords: Almotriptan, Controlled release, Dissolution profile, in-vitro drug release, Stability studies.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1313
Author(s):  
Cristhian Yarce ◽  
Juan Echeverri ◽  
Constain Salamanca

This work is the continuation of a series of studies focused on establishing the relationship between the surface thermodynamic properties of polyelectrolyte matrix tablets and drug release mechanisms. In this case, two model drugs with different polarity features, such as carbamazepine (non-polar) and metoprolol succinate (polar) were used in combination with polymeric material hydroxypropyl-methyl cellulose (HPMC) and two polyelectrolytes derived from maleic anhydride corresponding to the sodium salts of poly(maleic acid-alt-ethylene) and poly(maleic acid-alt-octadecene) named PAM-0Na and PAM-18Na, respectively. The polymers were obtained and characterized as reported previously. Surface studies were performed by the sessile drop method, whilst the surface free energy was determined through Owens, Wendt, Rable and Kaeble (OWRK) semi-empirical model. By contrast, the drug release studies were performed by in vitro dissolution tests, where data were analyzed through dissolution efficiency. The results showed that, depending on the drug polarity, type and polymer proportion, surface properties and drug release processes are significantly affected.


Author(s):  
Sakthikumar T ◽  
Rajendran N N ◽  
Natarajan R

The present study was aimed to develop an extended release tablet of metoprolol Succinate for the treatment of hypertension.  Four extended release formulations F1-F4 were developed using varying proportions of hydroxylpropyl-methylcellulose K100M, sodium carboxy methyl cellulose and Eudragit L30 D55 by wet granulation. Five extended release formulations F5-F9 containing HPMC K100M and HPMC 5 cps in varying concentration were developed by direct compression. The physicochemical and in vitro release characteristics of all the formulations were investigated and compared. Two formulations, F7 and F8 have shown not more 25% drug release  in 1st h, 20%-40% drug release at 4th hour, 40%-60% drug release at 8th hour and not less than 80% at 20th hour and the release pattern conform with USP specification for 24 hours extended release formulation. It can be conclusively stated that optimum concentration of HPMC K100M (58%-65%) by direct compression method can yield an extended release of metoprolol succinate for 24 hours.


2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.


Author(s):  
S. Sivaprasad ◽  
V. Alagarsamy ◽  
M. Prathibha Bharathi ◽  
P.V. Murali Krishna ◽  
K. Sandeeep Kanna

The main objective of the present study was to design a controlled release dosage form for an oral anti diabetic drug i.e. repaglinide employing polymers like eudragit s- 100. One of the other objective of this present study was to increase the biological half-life the drug by formulating into microspheres. The microspheres of repaglinide were prepared by solvent evaporation method by using eudragit s-100 and ethyl cellulose as polymers with different concentrations. Formulations (F1-F10) were prepared and evaluated for various micrometric properties and it was observed that though all the formulations were exhibited good flow properties, The F5 formulation exhibits higher in- vitro buoyancy time and entrapment efficiency which is considered for in- vitro and mucoadhesive studies. The FTIR results reveal that there was no interaction between the drug and the excipients. The in- vitro release profiles of F1-F5 indicated that all formulations showed controlled release over an extended period, with acceptable release kinetics. Among the all formulations F5 were considered as a promising candidate for sustain release of repaglinide.


Author(s):  
Farhana Sultan ◽  
Himansu Chopra ◽  
Gyanendra Kumar Sharma

Microsponge containing Luliconazole (LCZ) with different proportion of drug:polymer (Ethyl cellulose and Eudragit RS 100) were obtained efficiently using Quasi-emulsion solvent diffusion method. Luliconazole is an anti-fungal drug used for the topical delivery. The purpose of the microsponge formulation is to control the release of LCZ drug to the skin through Microsponge Delivery System (MDS) known to be the novel technique which overcome the maximum concentration of active ingredient, frequency doses, and skin irritation. The prepared microsponges were examined using drug content, % production yield, % entrapment efficiency and in-vitro drug release. The formulation were subjected to in-vitro drug release studies for 6 hr in which it was concluded that Ethyl cellulose microsponges formulated by drug:polymer (1:1) and Eudragit RS 100 microsponges formulated by drug:polymer (1:3) showed maximum controlled release i.e., Increase in drug:polymer ratio (1:1 to 1:9) increased the production yield and entrapment efficiency of microsponges using Ethyl cellulose with no significant effect for Eudragit RS 100.Therefore, both formulation F1 and F2 was dispersed in carbopol gel preparation for controlled delivery of LCZ to the skin. Various physical parameters like pH, spreadability, viscosity and in-vitro drug diffusion studies were evaluated for the prepared gel formulations. Microsponge gel formulation i.e., FG1 showed better results for controlled release of 89.40% as compared to FG2 i.e., 92.18% over the period of 12 hrs which is performed in Franz Diffusion Cell. On basis of in-vitro diffusion studies for LCZ gel formulation, microsponges using Ethyl cellulose (FG1) was found to be best for its controlled release of LCZ for 12 hrs and followed zero order kinetics. Hence, formulated LCZ loaded gel have potential to treat fungal infections i.e., tinea pedis, tinea cruris and tinea corporis.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 398-403
Author(s):  
Nidhi Kumari Pandey ◽  
Sailesh Kumar Ghatuary ◽  
Amit Dubey ◽  
Prabhat Kumar Jain

The objective of the present work was to develop Gastro retentive dosage forms which would remain in the stomach and upper part or GIT for a prolonged period of time thereby maximizing the drug release at desired site within the time before GRDFs left the stomach and upper part of the GIT, has provoked a great deal of increased interest in the formulation of such drug as floating drug delivery systems. Levofloxacin, (BCS class I) is a fluoroquinolone anti-bacterial agent. The rationale for the formulation of floating matrix tablet are acidic solubility of levofloxacin, residence of Halicobactor pylori mainly in sub region of stomach and the overdosing associated adverse effect due to continuous intake of drug in acute infection. A simple visible spectrophotometric method was employed for the estimation of levofloxacin at 294 nm and Beer’s law is obeyed in the concentration range of 2-10 μg /ml. Floating matrix tablet of levofloxacin was prepared by direct compression method using different polymers like hydroxyl propyl methyl cellulose (HPMC K4) and carbopol 934 as matrix formation polymers, sodium bicarbonate and citric acid was used as gas generating agents. The FTIR spectra of the levofloxacin and other excipients alone and in combination show the compatibility of the drug and excipients. Six formulations of different polymer percentages were formulated (F1-F6). Pre-compression parameters were evaluated. The influence of matrix forming agents and binary mixtures of them on levofloxacin release was investigated. The formulated tablets were characterized by hardness, friability, thickness, weight variation and in vitro drug release. The formulated tablets had acceptable physicochemical characters. The data obtained from the in-vitro dissolution studies of optimized batch F4were fitted in different models. The optimized formulation F4 showed 99.25% drug content and swelling index of 79.85 %. Drug release mechanism was found to be first order kinetics. Levofloxacin floating tablets exhibited increased gastric residence time, there by improved bioavailability and therapeutic effect of the drug.  


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (10) ◽  
pp. 30-38
Author(s):  
S Vidyadhara ◽  
◽  
R. L. C. Sasidhar ◽  
P Thrilochani ◽  
L. K. Lavanya

The present investigation was focused on the development and evaluation of controlled release pellets of losartan potassium with Eudragit S 100 and hydroxypropyl methyl cellulose phthalate (HPMCP) by employing pan coating technique. Eudragit S 100, a high viscosity grade controlled release polymer, was mainly used as coating agent for regulating the drug release from pellets. HPMCP, an enteric coating polymer was used in the present study to regulate the drug release at varied G.I. pH conditions. The prepared pellets were evaluated for particle size, drug content, friability and for in vitro drug release. The formulations were further characterized to identify any possible interactions by FTIR spectroscopy and differential scanning calorimetry. The surface morphology of the pellets was studied by scanning electron microscopy. From the results it was observed that due to increase in the concentration of Eudragit the drug release was extended up to 12 hours. The increase in the HPMCP polymeric concentration in formulations showed initial delay in drug release.


Sign in / Sign up

Export Citation Format

Share Document