scholarly journals Synthesis of Polyazobenzenes Exhibiting Photoisomerization and Liquid Crystallinity

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 348 ◽  
Author(s):  
Masashi Otaki ◽  
Reiji Kumai ◽  
Hajime Sagayama ◽  
Hiromasa Goto

While only a few studies have investigated the synthesis of main chain-type polyazobenzenes, they continue to draw an increasing amount of attention owing to their industrial applications in holography, dyes, and functional adhesives. In this study, dibromoazobenzene was prepared as a monomer for constructing azo-based π-conjugated polymers. Miyaura–Suzuki cross-coupling polymerization was conducted to develop copolymers containing an azobenzene unit as a photoisomerization block and a pyrimidine-based liquid crystal generator block. The prepared polymers exhibited thermotropic liquid crystallinity and underwent cis and trans photoisomerization upon irradiation with ultraviolet and visible light. Furthermore, the photoisomerization behavior was examined using optical absorption spectroscopy and synchrotron X-ray diffraction spectrometry.

Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


SmartMat ◽  
2021 ◽  
Author(s):  
Ze‐Fan Yao ◽  
Qi‐Yi Li ◽  
Hao‐Tian Wu ◽  
Yi‐Fan Ding ◽  
Zi‐Yuan Wang ◽  
...  

2008 ◽  
Vol 3 ◽  
pp. 97-102 ◽  
Author(s):  
Dinu Patidar ◽  
K.S. Rathore ◽  
N.S. Saxena ◽  
Kananbala Sharma ◽  
T.P. Sharma

The CdS nanoparticles of different sizes are synthesized by a simple chemical method. Here, CdS nanoparticles are grown through the reaction of solution of different concentration of CdCl2 with H2S. X-ray diffraction pattern confirms nano nature of CdS and has been used to determine the size of particle. Optical absorption spectroscopy is used to measure the energy band gap of these nanomaterials by using Tauc relation. Energy band gap ranging between 3.12 eV to 2.47 eV have been obtained for the samples containing the nanoparticles in the range of 2.3 to 6.0 nm size. A correlation between the band gap and size of the nanoparticles is also established.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ryosuke Sinmyo ◽  
Elena Bykova ◽  
Sergey V. Ovsyannikov ◽  
Catherine McCammon ◽  
Ilya Kupenko ◽  
...  

Abstract Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth’s interior.


2021 ◽  
Author(s):  
Alexander J. Stirk ◽  
Fabio E. S. Souza ◽  
Jenny Gerster ◽  
Fatemeh M. Mir ◽  
Avedis Karadeolian ◽  
...  

Crystallisations on both the academic and industrial scale often use large volumes of solvent. In order decrease the environmental impact of such processes, new techniques must be discovered that increase the efficiency of the solvents used. Introduced here is a process that combines repurposed industry standard hardware and aspects of mechanochemistry to produce a technique we call “Vapour Assisted Tumbling” (VAT). Pharmaceutical and well-known cocrystals and salts were formed by tumbling the coformers in an atmosphere of vaporised solvent, in this study, methanol (MeOH). This was done inside a custom built analogue of an industrial rotary cone dryer (RCD). It was found that a desired solid form could be obtained as monitored by powder X-ray diffraction and differential scanning calorimetry. By repurposing industrial RCDs, it is feasible that solid forms can be crystallised with both minimal and reusable/recyclable solvent – drastically lowering the environmental impact of such transformations.


2012 ◽  
Vol 31 (1) ◽  
pp. 79
Author(s):  
Khalil Faghihi ◽  
Masoumeh Soleimani ◽  
Shabnam Nezami ◽  
Meisam Shabanian

Two new samples of poly(amide-imide)-montmorillonite reinforced nanocomposites containing N-trimellitylimido-L-valine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-trimellitylimido-L-valine (3) with 4,4′-diaminodiphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PA-nanocomposite films (5a) and (5b) with 10 and 20 % silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposite films were investigated by using Uv-vis spectroscopy,  thermogravimetric analysis (TGA) and water uptake measurements.


2021 ◽  
Vol 19 (10) ◽  
pp. 82-88
Author(s):  
Duaa A. Uamran ◽  
Qasim Hassan Ubaid ◽  
Hammad R. Humud

Core-shell nanoparticles (SiO2/Ag) were manufactured by using a two-step process: Electric detonation of Ag. Wire in colloidal solution particles then by using laser pulses, nanoparticles are released. The structural features of these nanoparticles were checked by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The (XRD) study showed the progressive coverage of SiO2/Ag by nanoparticles according to the energies of the laser pulse. Measurements of morphology and EDX confirmed the Core/shell structure with particle size at the nano level. It confirmed that preliminary analysis consists of a SiO2 core and an Ag shell from FESEM. The surface of the microscopic balls (SiO2) has been covered completely and homogeneously with Ag nanoparticles, Moreover, Ultraviolet-Visible, and by optical absorption spectroscopy, the Nanoparticles with core crust SiO2/Ag showed excellent photocatalytic activities at various concentrations and laser pulse energy.


Sign in / Sign up

Export Citation Format

Share Document